Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
iScience ; 25(4): 104043, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1734555

ABSTRACT

With the rapid emergence and spread of SARS-CoV-2 variants, development of vaccines with broad and potent protectivity has become a global priority. Here, we designed a lipid nanoparticle-encapsulated, nucleoside-unmodified mRNA (mRNA-LNP) vaccine encoding the trimerized receptor-binding domain (RBD trimer) and showed its robust capability in inducing broad and protective immune responses against wild-type and major variants of concern (VOCs) in the mouse model of SARS-CoV-2 infection. The protectivity was correlated with RBD-specific B cell responses especially the long-lived plasma B cells in bone marrow, strong ability in triggering BCR clustering, and downstream signaling. Monoclonal antibodies isolated from vaccinated animals demonstrated broad and potent neutralizing activity against VOCs tested. Structure analysis of one representative antibody identified a novel epitope with a high degree of conservation among different variants. Collectively, these results demonstrate that the RBD trimer mRNA vaccine serves as a promising vaccine candidate against SARS-CoV-2 variants and beyond.

2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-319973

ABSTRACT

Background: The pandemic of Coronavirus disease 2019 (COVID-19) is ongoing globally, which is a big challenge for public health. Alteration of human microbiota had been observed in COVID-19. However, it is unknown how the microbiota is associated with the fatality in COVID-19.Methods: We conducted metatranscriptome sequencing on 588 longitudinal oropharyngeal swab specimens collected from 192 COVID-19 patients recruited in the LOTUS clinical trial (Registration number: ChiCTR2000029308) (including 39 deceased patients), and 95 healthy controls from the same geographic area.Findings: The upper respiratory tract (URT) microbiota in COVID-19 patients differed from that in healthy controls, while deceased patients possessed a more distinct microbiota. Streptococcus was enriched in recovered patients, whereas potential pathogens, including Candida and Enterococcus, were more abundant in deceased patients. Moreover, the microbiota dominated by Streptococcus was more stable than that dominated by other species. In contrast, the URT microbiota in deceased patients showed a more significant alteration and became more deviated from the norm after admission. The abundance of Streptococcus on admission, particularly that of S. parasanguis, was identified as a strong predictor of fatality by Cox and L1 regularized logistic regression analysis, thus could be used as a potential prognostic biomarker of COVID-19.Interpretation Alteration of the URT microbiota was observed in COVID-19 patients and was associated with the fatality rate. A higher abundance of Streptococcus, especially S. parasanguis, on admission in oropharyngeal swabs predicts a better outcome. The generalization of the results in other populations and underlying mechanisms need further investigations.Trial Registration: Participants were enrolled in ChiCTR2000029308.Funding: This study was funded in part by the National Major Science & Technology Project for Control and Prevention of Major Infectious Diseases in China (2017ZX10103004, 2018ZX10301401), the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2019-I2M-2-XX, 2016-I2M-1-014, 2018-I2M-1-003), The Non-profit Central Research Institute Fund of CAMS (2020HY320001, 2019PT310029), Beijing Advanced Innovation Center for Genomics (ICG), and Beijing Advanced Innovation Center for Structural Biology (ICSB).Declaration of Interests: All authors declare no competing interests.Ethics Approval Statement: The study was approved by the Institutional Review Board of Jin Yin-Tan Hospital (KY2020-02.01). Written informed consent was obtained from all patients or their legal representatives if they were too unwell to provide consent.

3.
Front Immunol ; 12: 766821, 2021.
Article in English | MEDLINE | ID: covidwho-1581335

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge and spread around the world, antibodies and vaccines to confer broad and potent neutralizing activity are urgently needed. Through the isolation and characterization of monoclonal antibodies (mAbs) from individuals infected with SARS-CoV-2, we identified one antibody, P36-5D2, capable of neutralizing the major SARS-CoV-2 variants of concern. Crystal and electron cryo-microscopy (cryo-EM) structure analyses revealed that P36-5D2 targeted to a conserved epitope on the receptor-binding domain of the spike protein, withstanding the three key mutations-K417N, E484K, and N501Y-found in the variants that are responsible for escape from many potent neutralizing mAbs, including some already approved for emergency use authorization (EUA). A single intraperitoneal (IP) injection of P36-5D2 as a prophylactic treatment completely protected animals from challenge of infectious SARS-CoV-2 Alpha and Beta. Treated animals manifested normal body weight and were devoid of infection-associated death up to 14 days. A substantial decrease of the infectious virus in the lungs and brain, as well as reduced lung pathology, was found in these animals compared to the controls. Thus, P36-5D2 represents a new and desirable human antibody against the current and emerging SARS-CoV-2 variants.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/drug therapy , SARS-CoV-2/drug effects , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , HEK293 Cells , Humans , Immunization, Passive , Mice
4.
Am J Respir Crit Care Med ; 204(12): 1379-1390, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1430274

ABSTRACT

Rationale: Alteration of human respiratory microbiota had been observed in coronavirus disease (COVID-19). How the microbiota is associated with the prognosis in COVID-19 is unclear. Objectives: To characterize the feature and dynamics of the respiratory microbiota and its associations with clinical features in patients with COVID-19. Methods: We conducted metatranscriptome sequencing on 588 longitudinal oropharyngeal swab specimens collected from 192 patients with COVID-19 (including 39 deceased patients) and 95 healthy controls from the same geographic area. Meanwhile, the concentration of 27 cytokines and chemokines in plasma was measured for patients with COVID-19. Measurements and Main Results: The upper respiratory tract (URT) microbiota in patients with COVID-19 differed from that in healthy controls, whereas deceased patients possessed a more distinct microbiota, both on admission and before discharge/death. The alteration of URT microbiota showed a significant correlation with the concentration of proinflammatory cytokines and mortality. Specifically, Streptococcus-dominated microbiota was enriched in recovered patients, and showed high temporal stability and resistance against pathogens. In contrast, the microbiota in deceased patients was more susceptible to secondary infections and became more deviated from the norm after admission. Moreover, the abundance of S. parasanguinis on admission was significantly correlated with prognosis in nonsevere patients (lower vs. higher abundance, odds ratio, 7.80; 95% CI, 1.70-42.05). Conclusions: URT microbiota dysbiosis is a remarkable manifestation of COVID-19; its association with mortality suggests it may reflect the interplay between pathogens, symbionts, and the host immune status. Whether URT microbiota could be used as a biomarker for diagnosis and prognosis of respiratory diseases merits further investigation.


Subject(s)
COVID-19/microbiology , COVID-19/mortality , Microbiota , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/mortality , Adult , Aged , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Prognosis , SARS-CoV-2
5.
Mol Cell ; 80(6): 1123-1134.e4, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-939163

ABSTRACT

Analyzing the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from clinical samples is crucial for understanding viral spread and evolution as well as for vaccine development. Existing RNA sequencing methods are demanding on user technique and time and, thus, not ideal for time-sensitive clinical samples; these methods are also not optimized for high performance on viral genomes. We developed a facile, practical, and robust approach for metagenomic and deep viral sequencing from clinical samples. We demonstrate the utility of our approach on pharyngeal, sputum, and stool samples collected from coronavirus disease 2019 (COVID-19) patients, successfully obtaining whole metatranscriptomes and complete high-depth, high-coverage SARS-CoV-2 genomes with high yield and robustness. With a shortened hands-on time from sample to virus-enriched sequencing-ready library, this rapid, versatile, and clinic-friendly approach will facilitate molecular epidemiology studies during current and future outbreaks.


Subject(s)
COVID-19/genetics , Genome, Viral , High-Throughput Nucleotide Sequencing , RNA, Viral/genetics , SARS-CoV-2/genetics , Whole Genome Sequencing , Animals , Humans , Mice , NIH 3T3 Cells , RNA, Viral/metabolism , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL