Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Food Biochem ; 46(5): e14085, 2022 05.
Article in English | MEDLINE | ID: covidwho-1673175

ABSTRACT

SARS-CoV-2 wreaks havoc around the world, triggering the COVID-19 pandemic. It has been confirmed that the endoribonuclease NSP15 is crucial to the viral replication, and thus identified as a potential drug target against COVID-19. The NSP15 protein was used as the target to conduct high-throughput virtual screening on 30,926 natural products from the NPASS database to identify potential NSP15 inhibitors. And 100 ns molecular dynamics simulations were performed on the NSP15 and NSP15-NPC198199 system. In all, 10 natural products with high docking scores with NSP15 protein were obtained, among which compound NPC198199 scored the highest. The analysis of the binding mode between NPC198199 and NSP15 found that NPC198199 would form H-bond interactions with multiple key residues at the catalytic site. Subsequently, a series of post-dynamics simulation analyses (including RMSD, RMSF, PCA, DCCM, RIN, binding free energy, and H-bond occupancy) were performed to further explore inhibitory mechanism of compound NPC198199 on NSP15 protein at the molecular level. The research strongly indicates that the 10 natural compounds screened can be used as potential inhibitors of NSP15, and provides valuable information for the subsequent drug discovery of anti-SARS-CoV-2. PRACTICAL APPLICATIONS: Natural products play an important role in the treatment of many difficult diseases. In this study, high-throughput virtual screening technology was used to screen the natural product database to obtain potential inhibitors against endoribonuclease NSP15. The binding mechanism between natural products and NSP15 was investigated at the molecular level by molecular dynamics technology so that it is expected to become candidate drugs for the treatment of SARS-CoV-2. We hope that our research can provide new clue to combat COVID-19 and overcome the epidemic situation as soon as possible.


Subject(s)
Antiviral Agents , Biological Products , Endoribonucleases , SARS-CoV-2 , Viral Nonstructural Proteins , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biological Products/pharmacology , COVID-19/drug therapy , Endoribonucleases/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors
2.
Environ Res ; 207: 112161, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1670475

ABSTRACT

BACKGROUND: Congenital anomalies (CAs) are the leading causes for children's disabilities and mortalities worldwide. The associations between air pollution and CAs are not fully characterized in fetuses born by in vitro fertilization (IVF) who are at high risk of congenital anomalies. METHODS: We conducted a cross-sectional study including 16,971 IVF cycles from three hospitals in Hebei Province, China, 2014-2019. Air quality data was obtained from 149 air monitoring stations. Individual average daily concentrations of PM2.5, PM10, NO2, SO2, CO, and O3 were estimated by spatiotemporal kriging method. Exposure windows were divided into 5: preantral follicle period, antral follicle period, germinal period, embryonic period and early fetal period. Logistic generalized estimating equations were used to estimate the associations between air pollutants and overall or organ-system specific congenital anomalies. Negative control exposure method was used to detect and reduce bias of estimation. RESULTS: We found increasing levels of PM2.5 and PM10 were associated with higher risk of overall congenital anomalies during early fetal period, equating gestation 10-12 weeks (OR: 1.05, 95% CI: 1.02-1.09, p = 0.013 for a 10 µg/m3 increase of PM2.5; OR: 1.03, 95% CI: 1.01-1.06, p = 0.021 for a 10 µg/m3 increase of PM10). Cleft lip and cleft palate were associated with PM10 in germinal period and early fetal period. The CAs of eye, ear, face and neck were related to CO in preantral follicle stage. We did not find an association between chromosome abnormalities and air pollution exposure. CONCLUSIONS: We concluded that ambient air pollution was a risk factor for congenital anomalies in the fetuses conceived through IVF, especially exposure in early fetal period.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Child , China/epidemiology , Cross-Sectional Studies , Female , Fertilization in Vitro , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , Parturition , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL