Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Document Type
Year range
1.
China Tropical Medicine ; 23(4):388-391, 2023.
Article in Chinese | GIM | ID: covidwho-20245139

ABSTRACT

Objective: To analyze and compare the effects of different clinical characteristics on the negative conversion time of nucleic acid detection after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant infection, and to provide a scientific basis for the isolation and treatment of coronavirus disease 2019 (COVID-19). Methods: The epidemiological and clinical data of 228 mild SARS-CoV-2 Omicron variant infected patients diagnosed in Shanghai were retrospectively collected from April 27, 2022 to June 8, 2022 in Wujiaochang designated Hospital, Yangpu District, Shanghai. The negative conversion time of nucleic acid detection was used as the outcome variable, and the patients were divided into A (18 days) and B (>18 days). Univariate and multivariate logistic regression analysis were used to analyze the influencing factors of the negative conversion time of nucleic acid detection. Results: The mean nucleic acid conversion time of 228 patients was (18.7+or-12.1) d, with the median time of 18 (2-46) d. Among them, 120 patients in group A had an average nucleic acid conversion time of (13.2+or-2.0) d, and 108 cases in group B had an average nucleic acid conversion time of (20.8+or-1.3) d. Univariate analysis showed that there were no statistically significant differences in the effects of hypertension, coronary heart disease, diabetes, hypokalemia, malignant tumors, neuropsychiatric diseases, chronic digestive diseases on the negative nucleic acid conversion time (P > 0.05);however, there were significant differences in the effects of combined cerebrovascular disease, leukopenia, chronic respiratory system diseases and vaccination on the negative nucleic acid conversion time (P < 0.05). Further multivariate logistic regression analysis revealed that the combination of chronic respiratory diseases and non-vaccination were significant risk factors for prolongation of negative nucleic acid conversion time (P < 0.05). Conclusions: The results of this study show that gender, age and whether hypertension, coronary heart disease, diabetes mellitus, hypokalemia, malignant tumor, neuropsychiatric disease and chronic digestive disease have no significant effect on the nucleic acid conversion time, whereas chronic respiratory disease and no vaccination are significantly correlated with the prolongation of nucleic acid conversion time in SARS-CoV-2 Omicron-infected patients.

2.
Angewandte Chemie ; 59(47), 2020.
Article in English | ProQuest Central | ID: covidwho-915118

ABSTRACT

Asymmetric Synthesis The first catalytic asymmetric synthesis of remdesivir by the coupling of the P‐racemic phosphoryl chloride with protected nucleoside GS441524 is described by W. Zhang et al. in their Communication on page 20814.

3.
Angewandte Chemie ; 132(47), 2020.
Article in English | ProQuest Central | ID: covidwho-915115

ABSTRACT

Asymmetrische Synthese Die erste katalytische asymmetrische Synthese von Remdesivir durch die Kupplung von P‐racemischem Phosphorylchlorid mit dem geschützten Nukleosid GS441524 wird von W. Zhang et al. in der Zuschrift auf S. 21000 vorgestellt.

4.
Angew Chem Int Ed Engl ; 59(47): 20814-20819, 2020 11 16.
Article in English | MEDLINE | ID: covidwho-739123

ABSTRACT

The catalytic asymmetric synthesis of the anti-COVID-19 drug Remdesivir has been realized by the coupling of the P-racemic phosphoryl chloride with protected nucleoside GS441524. The chiral bicyclic imidazole catalyst used is crucial for the dynamic kinetic asymmetric transformation (DyKAT) to proceed smoothly with high reactivity and excellent stereoselectivity (96 % conv., 22:1 SP :RP ). Mechanistic studies showed that this DyKAT is a first-order visual kinetic reaction dependent on the catalyst concentration. The unique chiral bicyclic imidazole skeleton and carbamate substituent of the catalyst are both required for the racemization process, involving the phosphoryl chloride, and subsequent stereodiscriminating step. A 10 gram scale reaction was also conducted with comparably excellent results, showing its potential for industrial application.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/chemical synthesis , Adenosine Monophosphate/chemical synthesis , Adenosine Monophosphate/chemistry , Alanine/chemical synthesis , Alanine/chemistry , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/virology , Catalysis , Humans , Imidazoles/chemistry , Kinetics , Molecular Conformation , SARS-CoV-2/isolation & purification , Stereoisomerism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL