Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Contin Educ Nurs ; 53(5): 212-220, 2022 May.
Article in English | MEDLINE | ID: covidwho-1834973

ABSTRACT

Objective This study explored the feasibility and effects of a game-based phone application for training health care workers to use personal protective equipment. Method A single-blind randomized controlled trial was conducted. All participants in the experimental group (n = 123) and the control group (n = 125) received 75 minutes of training and were provided with a video and a paper copy of the procedures. Participants in the experimental group used an additional game-based phone application to simulate the procedures. Results Participants in the experimental group practiced a median of 15 times (range, 14-19 times). The learning curve indicated that they needed at least 12 repetitions to master the skill. Score improvements (Z = -2.257, p = .024) in the experimental group were significantly superior to those in the control group, as were the incidences of procedural errors of hand hygiene (χ2 = 4.085, p = .043) and protective clothing (χ2 = 5.394, p = .02). Conclusion The game-based phone application simulation guided participants to practice enough times to master the skill, enhance their skill performance, and reduce the incidence of procedural errors. [J Contin Educ Nurs. 2022;53(5):212-220.].


Subject(s)
Hand Hygiene , Personal Protective Equipment , Health Personnel/education , Humans , Single-Blind Method
2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335494

ABSTRACT

Recent emergence of SARS-CoV-2 Omicron sublineages BA.2.12.1, BA.2.13, BA.4 and BA.5 all contain L452 mutations and show potential higher transmissibility over BA.2. The new variants’ receptor binding and immune evasion capability require immediate investigation, especially on the role of L452 substitutions. Herein, coupled with structural comparisons, we showed that BA.2 sublineages, including BA.2.12.1 and BA.2.13, exhibit increased ACE2-binding affinities compared to BA.1;while BA.4/BA.5 shows the weakest receptor-binding activity due to F486V and R493Q reversion. Importantly, compared to BA.2, BA.2.12.1 and BA.4/BA.5 exhibit stronger neutralization escape from the plasma of 3-dose vaccinees and, most strikingly, from vaccinated BA.1 convalescents. To delineate the underlying evasion mechanism, we determined the escaping mutation profiles, epitope distribution and Omicron sub-lineage neutralization efficacy of 1640 RBD-directed neutralizing antibodies (NAbs), including 614 isolated from BA.1 convalescents. Interestingly, post-vaccination BA.1 infection mainly recalls wildtype-induced humoral memory and elicits antibodies that neutralize both wild-type and BA.1. These cross-reactive NAbs are significantly enriched on non-ACE2-competing epitopes;and surprisingly, the majority are undermined by R346 and L452 substitutions, namely R346K (BA.1.1), L452M (BA.2.13), L452Q (BA.2.12.1) and L452R (BA.4/BA.5), suggesting that R346K and L452 mutations appeared under the immune pressure of Omicron convalescents. Nevertheless, BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1 but do not respond to wild-type SARS-CoV-2, due to the high susceptibility to N501, N440, K417 and E484. However, these NAbs are largely escaped by BA.2 sublineages and BA.4/BA.5 due to D405N and F486V, exhibiting poor neutralization breadths. As for therapeutic NAbs, LY-CoV1404 (Bamlanivimab) and COV2-2130 (Cilgavimab) can still effectively neutralize BA.2.12.1 and BA.4/BA.5, while the S371F, D405N and R408S mutations carried by BA.2/BA.4/BA.5 sublineages would undermine most broad sarbecovirus NAbs. Together, our results indicate that Omicron can evolve mutations to specifically evade humoral immunity elicited by BA.1 infection. The continuous evolution of Omicron poses great challenges to SARS-CoV-2 herd immunity and suggests that BA.1-derived vaccine boosters may not be ideal for achieving broad-spectrum protection.

3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335258

ABSTRACT

The recently emerged SARS-CoV-2 Omicron sublineages BA.2.12.1, BA.2.13, BA.4 and BA.5 all contain L452 mutations and show potential higher transmissibility over BA.2 1 . The new variants’ receptor binding and immune evasion capability require immediate investigation, especially on the role of L452 substitutions. Herein, coupled with structural comparisons, we show that BA.2 sublineages, including BA.2.12.1 and BA.2.13, exhibit increased ACE2-binding affinities compared to BA.1;while BA.4/BA.5 displays the weakest receptor-binding activity due to F486V and R493Q reversion. Importantly, compared to BA.2, BA.2.12.1 and BA.4/BA.5 exhibit stronger neutralization evasion against the plasma of 3-dose vaccinees and, most strikingly, of vaccinated BA.1 convalescents. To delineate the underlying evasion mechanism, we determined the escaping mutation profiles 2 , epitope distribution 3 and Omicron sublineage neutralization efficacy of 1640 RBD-directed neutralizing antibodies (NAbs), including 614 isolated from BA.1 convalescents. Interestingly, post-vaccination BA.1 infection mainly recalls wildtype (WT) induced humoral memory and elicits antibodies that neutralize both WT and BA.1. These cross-reactive NAbs are significantly enriched on non-ACE2-competing epitopes;and surprisingly, the majority are undermined by R346 and L452 substitutions, namely R346K (BA.1.1), L452M (BA.2.13), L452Q (BA.2.12.1) and L452R (BA.4/BA.5), suggesting that R346K and L452 mutations appeared under the immune pressure induced by Omicron convalescents. Nevertheless, BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1 but do not respond to WT SARS-CoV-2 due to the high susceptibility to N501, N440, K417 and E484. However, these NAbs are largely escaped by BA.2 sublineages and BA.4/BA.5 due to D405N and F486V, exhibiting poor neutralization breadths. As for therapeutic NAbs, LY-CoV1404 (Bebtelovimab 4 ) and COV2-2130 (Cilgavimab 5 ) can still effectively neutralize BA.2.12.1 and BA.4/BA.5, while the S371F, D405N and R408S mutations carried by BA.2/BA.4/BA.5 sublineages would undermine most broad sarbecovirus NAbs. Together, our results indicate that Omicron can evolve mutations to specifically evade humoral immunity elicited by BA.1 infection. The continuous evolution of Omicron poses great challenges to SARS-CoV-2 herd immunity and suggests that BA.1-derived vaccine boosters may not be ideal for achieving broad-spectrum protection.

4.
Hepatol Int ; 16(3): 691-701, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1782952

ABSTRACT

BACKGROUND: Data on safety and immunogenicity of coronavirus disease 2019 (COVID-19) vaccination in patients with compensated (C-cirrhosis) and decompensated cirrhosis (D-cirrhosis) are limited. METHODS: In this prospective multicenter study, adult participants with C-cirrhosis and D-cirrhosis were enrolled and received two doses of inactivated whole-virion COVID-19 vaccines. Adverse events were recorded within 14 days after any dose of vaccination, and serum samples of enrolled patients were collected and tested for SARS-CoV-2 neutralizing antibodies at least 14 days after the second dose. Risk factors for negative neutralizing antibody were analyzed. RESULTS: In total, 553 patients were enrolled from 15 centers in China, including 388 and 165 patients with C-cirrhosis and D-cirrhosis. The vaccines were well tolerated, most adverse reactions were mild and transient, and injection site pain (23/388 [5.9%] vs 9/165 [5.5%]) and fatigue (5/388 [1.3%] vs 3/165 [1.8%]) were the most frequently local and systemic adverse events in both the C-cirrhosis and D-cirrhosis groups. Overall, 4.4% (16/363) and 0.3% (1/363) of patients were reported Grades 2 and 3 alanine aminotransferase (ALT) elevations (defined as ALT > 2 upper limit of normal [ULN] but ≤ 5 ULN, and ALT > 5 ULN, respectively). The positive rates of COVID-19 neutralizing antibodies were 71.6% (278/388) and 66.1% (109/165) in C-cirrhosis and D-cirrhosis groups. Notably, Child-Pugh score of B and C levels was an independent risk factor of negative neutralizing antibody. CONCLUSIONS: Inactivated COVID-19 vaccinations are safe with acceptable immunogenicity in cirrhotic patients, and Child-Pugh score of B and C levels is associated with hyporesponsive to COVID-19 vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunogenicity, Vaccine , Liver Cirrhosis , Prospective Studies , SARS-CoV-2
5.
MedComm (2020) ; 3(2): e130, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1782644

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, particularly those with multiple mutations in receptor-binding domain (RBD), pose a critical challenge to the efficacy of coronavirus disease 2019 (COVID-19) vaccines and therapeutic neutralizing monoclonal antibodies (mAbs). Omicron sublineages BA.1, BA.2, BA.3, as well as the recent emergence of C.1.2, B.1.630, B.1.640.1, and B.1.640.2, have multiple mutations in RBD and may lead to severe neutralizing antibody evasion. It is urgent to evaluate the antigenic change of the above seven variants against mAbs and sera from guinea pigs immunized with variants of concern (VOCs) (Alpha, Beta, Gamma, Delta, Omicron) and variants of interest (VOIs) (Lambda, Mu) immunogens. Only seven out of the 24 mAbs showed no reduction in neutralizing activity against BA.1, BA.2, and BA.3. However, among these seven mAbs, the neutralization activity of XGv337 and XGv338 against C.1.2, B.1.630, B.1.640.1, and B.1.640.2 were decreased. Therefore, only five neutralizing mAbs showed no significant change against these seven variants. Using VOCs and VOIs as immunogens, we found that the antigenicity of variants could be divided into three clusters, and each cluster showed similar antigenicity to different immunogens. Among them, D614G, B.1.640.1, and B.1.630 formed a cluster, C.1.2 and B.1.640.2 formed a cluster, and BA.1, BA.2, and BA.3 formed a cluster.

6.
Journal of Medical Virology ; 94(5):i-i, 2022.
Article in English | Wiley | ID: covidwho-1750403

ABSTRACT

Front Cover Caption: The cover image is based on the Research Article Aggregation of high-frequency RBD mutations of SARS-CoV-2 with three VOCs did not cause significant antigenic drift by Tao Li et al., https://doi.org/10.1002/jmv.27596.

7.
Emerg Microbes Infect ; 11(1): 1024-1036, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1740712

ABSTRACT

SARS-CoV-2 has caused the COVID-19 pandemic. B.1.617 variants (including Kappa and Delta) have been transmitted rapidly in India. The transmissibility, pathogenicity, and neutralization characteristics of these variants have received considerable interest. In this study, 22 pseudotyped viruses were constructed for B.1.617 variants and their corresponding single amino acid mutations. B.1.617 variants did not exhibit significant enhanced infectivity in human cells, but mutations T478K and E484Q in the receptor binding domain led to enhanced infectivity in mouse ACE2-overexpressing cells. Furin activities were slightly increased against B.1.617 variants and cell-cell fusion after infection of B.1.617 variants were enhanced. Furthermore, B.1.617 variants escaped neutralization by several mAbs, mainly because of mutations L452R, T478K, and E484Q in the receptor binding domain. The neutralization activities of sera from convalescent patients, inactivated vaccine-immunized volunteers, adenovirus vaccine-immunized volunteers, and SARS-CoV-2 immunized animals against pseudotyped B.1.617 variants were reduced by approximately twofold, compared with the D614G variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Cell Fusion , Humans , Mice , Mutation , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Viral Tropism
8.
Psychol Res Behav Manag ; 13: 1027-1045, 2020.
Article in English | MEDLINE | ID: covidwho-1725156

ABSTRACT

BACKGROUND AND AIM: The spread of the COVID-19 pandemic has led to a number of instances of large-scale panic buying. Taking the COVID-19 pandemic as an example, this paper explores the impact of panic in uncertain environments on panic buying behavior. Under certain circumstances, the spread of rumors about shortage of goods is likely to cause large-scale panic buying. This paper focuses on the study of such panic buying caused by online rumors. METHODS: Firstly, based on the improved BA network, this paper constructs a directed network for public opinion communication and integrates an offline communication network to build a two-layer synchronous coupling network based on online and offline communications. Secondly, the individual decision model and the panic emotion transmission model under the uncertain environment are constructed. Netizens judge the authenticity of network information, determine their own panic degree according to the above two models, and judge whether they participate in the panic buying based on the above factors. Finally, the spread of the public opinion of goods buying under the panic state is simulated and analyzed. RESULTS: The experimental results of the two-layer synchronous network that integrates offline interaction are significantly different from the results of pure online interaction, which increases the speed of public opinions spread after offline interaction and affects a wider range of groups. Under the condition of sufficient supplies, panic in local areas will not cause large-scale panic buying on the whole network. However, the results under the same parameters suggest that if there is a shortage of supplies, panic will spread quickly across the network, leading to large-scale panic buying. It is very important to ensure sufficient supply of materials at the beginning of the spread of rumors, which can reduce the number of buyers. However, if there is a shortage of goods before the panic dissipates in the later stage, there will still be a large-scale rush purchase. CONCLUSION: These results explain the reasons why it is difficult to stop the buying events in many areas under the COVID-19 pandemic. Under the uncertain environment, the panic caused by people's fear of stock shortage promotes the occurrence of large-scale rush buying. Therefore, in the event of major public health events, ensuring adequate supply of materials is the top priority.

9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-323773

ABSTRACT

SARS-CoV-2 has caused the COVID-19 pandemic. Recently, B.1.617 variants have been transmitted rapidly in India. The transmissibility, pathogenicity, and neutralization characteristics of these variants have received considerable interest. In this study, 22 pseudotyped viruses were constructed for B.1.617 variants and their corresponding single amino acid mutations. B.1.617 variants did not exhibit significant enhanced infectivity in human cells, but mutations T478K and E484Q in the receptor binding domain led to enhanced infectivity in mouse ACE2-overexpressing cells. Furin activities were slightly increased against B.1.617 variants and cell–cell fusion after infection of B.1.617 variants was enhanced. Furthermore, B.1.617 variants escaped neutralization by several mAbs, mainly because of mutations L452R, T478K, and E484Q in the receptor binding domain. The neutralization activities of sera from convalescent patients, inactivated vaccine-immunized volunteers, adenovirus vaccine-immunized volunteers, and SARS-CoV-2 immunized animals against pseudotyped B.1.617 variants were reduced by approximately twofold, compared with the D614G variant.

10.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-323767

ABSTRACT

The SARS-CoV-2 variant VUI/202012/01 has been reported to spread unexpectedly fast in the United Kingdom. It is estimated that its transmissibility may increase by 70%. In this study, the top five variants circulating in the UK including D614G+L18F+A222V, D614G+A222V, D614G+S477N, VUI/202012/01 and D614G+69-70del+439K were analyzed for their infective and neutralizing characteristics. The pseudotyped viruses were constructed for the five variants and 12 single mutants composed those variants. We found that the VUI/202012/01 variant does enhance its infectivity due to the cumulative effect of multiple mutations including 69-70del and 144/145del mutations in NTD, A570D in RBD, and S982A in S2. Meanwhile, mutations N501Y, N439K and S477N in RBD can cause a significant decrease in the neutralization activity for some mAbs. Although VUI/202012/01 did not affect the neutralization effect of convalescent sera, it affected the neutralization activity of animal immunized sera by RBD protein or recombinant spike DNA to some extent.

11.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-317971

ABSTRACT

Jianhui Nie, Qianqian Li, and Jiajing Wu contributed equally to this work. Pseudotyped viruses are useful virological tools due to their safety and versatility. Based on a VSV pseudotyped virus production system, we developed a pseudotyped virus-based neutralization assay against SARS-CoV-2 in biosafety level 2 facilities. This protocol includes production, titration of the SARS-CoV-2 S pseudotyped virus and neutralization assay based on it. Various types of samples targeting virus attachment and entry could be evaluated for their potency, including serum samples derived from animals and humans, monoclonal antibodies, fusion inhibitors (peptides or small molecules). If the pseudotyped virus stock has been prepared in advance, it will take 2 days to get the potency data for the candidate samples. Experience of handling cells is needed before implementing this protocol.

12.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-312737

ABSTRACT

The SARS-CoV-2 virus has had a major impact on global human health. During the spread of SARS-CoV-2, weakened host immunity and the use of vaccines with low efficacy may result in the development of more virulent strains or strains with resistance to existing vaccines and antibodies. The prevalence of SARS-CoV-2 mutant strains differs among regions, and this variation may affect the effectiveness of vaccines. In this study, an epidemiological investigation of SARS-CoV-2 in Portugal was performed, and the VSV-ΔG-G* pseudovirus system was used to construct 12 S protein epidemic mutants, D614G, A222V+D614G, B.1.1.7, S477N+D614G, P1162R+D614G+A222V, D839Y+D614G, L176F+D614G, B.1.1.7+L216F, B.1.1.7+M740V, B.1.258, B.1.258+L1063F, and B.1.258+N751Y.The mutant pseudoviruses were used to infect four susceptible cell lines (i.e., Huh7, hACE2-293T, Vero, and LLC-MK2) and 14 cell lines overexpressing ACE2 from different species. Mutant strains did not show increased infectivity or cross-species transmission. Neutralization activity was evaluated using the newly constructed pseudoviruses, mouse serum, and 11 monoclonal antibodies. The neutralizing activity in immunized mouse serum was not significantly reduced for the mutant strains. Additionally, mutant strains in Portugal showed escape from 9 of 11 monoclonal antibodies. Neutralization resistance was mainly caused by the S477N, N439K, and N501Y mutations in the Spike receptor binding domain. These findings emphasize the importance of SARS-CoV-2 mutation tracking in different regions for epidemic prevention and control.

13.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327486

ABSTRACT

Constantly emerging SARS-CoV-2 variants, such as Omicron BA.1, BA.1.1 and BA.2, pose a severe challenge to COVID-19 control 1–10 . Broad-spectrum antibody therapeutics and vaccines are needed for defending against future SARS-CoV-2 variants and sarbecovirus pandemics 11–14 ;however, we have yet to gain a comprehensive understanding of the epitopes capable of inducing broad sarbecovirus neutralization. Here, we report the identification of 241 anti-RBD broad sarbecovirus neutralizing antibodies isolated from 44 SARS-CoV-2 vaccinated SARS convalescents. Neutralizing efficacy of these antibodies against D614G, SARS-CoV-1, Omicron variants (BA.1, BA.1.1, BA.2), RATG13 and Pangolin-GD is tested, and their binding capability to 21 sarbecovirus RBDs is measured. High-throughput yeast-display mutational screening was further applied to determine each antibody’s RBD escaping mutation profile, and unsupervised epitope clustering based on escaping mutation hotspots was performed 7,15–18 . A total of 6 clusters of broad sarbecovirus neutralizing antibodies with diverse breadth and epitopes were identified, namely Group E1 (S309 19 , BD55-3152 site), E3 (S2H97 20 site), F1 (CR3022 21 , S304 22 site), F2 (DH1047 23 , BD55-3500 site), F3 (ADG-2 24 , BD55-3372 site) and B’ (S2K146 25 site). Members of E1, F2 and F3 demonstrate the highest neutralization potency;yet, Omicron, especially BA.2, has evolved multiple mutations (G339D, N440K, T376A, D405N, R408S) to escape antibodies of these groups. Nevertheless, broad sarbecovirus neutralizing antibodies that survived Omicron would serve as favorable therapeutic candidates. Furthermore, structural analyses of selected drug candidates propose two non-competing antibody pairing strategies, E1-F2 and E1-F3, as broad-spectrum antibody cocktails. Together, our work provides a comprehensive epitope map of broad sarbecovirus neutralizing antibodies and offers critical instructions for designing broad-spectrum vaccines.

14.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-325079

ABSTRACT

Ten emerging SARS-CoV-2 variants—B.1.1.298, B.1.1.7, B.1.351, P.1, P.2, B.1.429, B.1.525, B.1.526-1, B.1.526-2, B.1.1.318—and seven corresponding single amino acid mutations in the receptor-binding domain were examined using SARS-CoV-2 pseudovirus. The results indicate that the current SARS-CoV-2 variants do not increase infectivity among humans. The K417N/T, N501Y, or E484K-carrying variants exhibited increased abilities to infect to mouse ACE2-overexpressing cells. The activities of Furin, TMPRSS2, and cathepsin L were increased against most of the variants. RBD amino acid mutations comprising K417T/N, L452R, Y453F, S477N, E484K, and N501Y caused significant immune escape from 11 of 13 monoclonal antibodies. However, the resistance to neutralization by convalescent serum or vaccines was mainly caused by the E484K mutation, while the neutralization of E484K-carrying variants was decreased by 1.1–6.2-fold. The convalescent serum from B.1.1.7- and B.1.351-infected patients neutralized the variants themselves better than other SARS-CoV-2 variants.

15.
Acta Pharm Sin B ; 2022 Feb 11.
Article in English | MEDLINE | ID: covidwho-1676402

ABSTRACT

The heparin polysaccharide nanoparticles block the interaction between heparan sulfate/S protein and inhibit the infection of both wild-type SARS-CoV-2 pseudovirus and the mutated strains through pulmonary delivery.Image 1.

16.
Clin Gastroenterol Hepatol ; 20(7): 1516-1524.e2, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1670285

ABSTRACT

BACKGROUND & AIMS: We aimed to assess the safety and immunogenicity of inactivated whole-virion severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in patients with chronic liver diseases (CLD) in this study. METHODS: This was a prospective, multi-center, open-label study. Participants aged over 18 years with confirmed CLD and healthy volunteers were enrolled. All participants received 2 doses of inactivated whole-virion SARS-CoV-2 vaccines. Adverse reactions were recorded within 14 days after any dose of SARS-CoV-2 vaccine, laboratory testing results were collected after the second dose, and serum samples of enrolled subjects were collected and tested for SARS-CoV-2 neutralizing antibodies at least 14 days after the second dose. RESULTS: A total of 581 participants (437 patients with CLD and 144 healthy volunteers) were enrolled from 15 sites in China. Most adverse reactions were mild and transient, and injection site pain (n = 36; 8.2%) was the most frequently reported adverse event. Three participants had grade 3 aminopherase elevation (defined as alanine aminopherase >5 upper limits of normal) after the second dose of inactivated whole-virion SARS-CoV-2 vaccination, and only 1 of them was judged as severe adverse event potentially related to SARS-CoV-2 vaccination. The positive rates of SARS-CoV-2 neutralizing antibodies were 76.8% in the noncirrhotic CLD group, 78.9% in the compensated cirrhotic group, 76.7% in the decompensated cirrhotic group (P = .894 among CLD subgroups), and 90.3% in healthy controls (P = .008 vs CLD group). CONCLUSION: Inactivated whole-virion SARS-CoV-2 vaccines are safe in patients with CLD. Patients with CLD had lower immunologic response to SARS-CoV-2 vaccines than healthy population. The immunogenicity is similarly low in noncirrhotic CLD, compensated cirrhosis, and decompensated cirrhosis.


Subject(s)
COVID-19 , Liver Diseases , Viral Vaccines , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Liver Cirrhosis , Middle Aged , Prospective Studies , SARS-CoV-2 , Viral Vaccines/adverse effects
17.
Nature ; 603(7903): 919-925, 2022 03.
Article in English | MEDLINE | ID: covidwho-1655591

ABSTRACT

Omicron (B.1.1.529), the most heavily mutated SARS-CoV-2 variant so far, is highly resistant to neutralizing antibodies, raising concerns about the effectiveness of antibody therapies and vaccines1,2. Here we examined whether sera from individuals who received two or three doses of inactivated SARS-CoV-2 vaccine could neutralize authentic Omicron. The seroconversion rates of neutralizing antibodies were 3.3% (2 out of 60) and 95% (57 out of 60) for individuals who had received 2 and 3 doses of vaccine, respectively. For recipients of three vaccine doses, the geometric mean neutralization antibody titre for Omicron was 16.5-fold lower than for the ancestral virus (254). We isolated 323 human monoclonal antibodies derived from memory B cells in triple vaccinees, half of which recognized the receptor-binding domain, and showed that a subset (24 out of 163) potently neutralized all SARS-CoV-2 variants of concern, including Omicron. Therapeutic treatments with representative broadly neutralizing monoclonal antibodies were highly protective against infection of mice with SARS-CoV-2 Beta (B.1.351) and Omicron. Atomic structures of the Omicron spike protein in complex with three classes of antibodies that were active against all five variants of concern defined the binding and neutralizing determinants and revealed a key antibody escape site, G446S, that confers greater resistance to a class of antibodies that bind on the right shoulder of the receptor-binding domain by altering local conformation at the binding interface. Our results rationalize the use of three-dose immunization regimens and suggest that the fundamental epitopes revealed by these broadly ultrapotent antibodies are rational targets for a universal sarbecovirus vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Disease Models, Animal , Humans , Mice , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
18.
Arch Virol ; 167(2): 459-470, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1653515

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a major impact on global human health. During the spread of SARS-CoV-2, weakened host immunity and the use of vaccines with low efficacy may result in the development of more-virulent strains or strains with resistance to existing vaccines and antibodies. The prevalence of SARS-CoV-2 mutant strains differs between regions, and this variation may have an impact on the effectiveness of vaccines. In this study, an epidemiological investigation of SARS-CoV-2 in Portugal was performed, and the VSV-ΔG-G* pseudovirus system was used to construct 12 spike protein epidemic mutants, D614G, A222V+D614G, B.1.1.7, S477N+D614G, P1162R+D614G+A222V, D839Y+D614G, L176F+D614G, B.1.1.7+L216F, B.1.1.7+M740V, B.1.258, B.1.258+L1063F, and B.1.258+N751Y. The mutant pseudoviruses were used to infect four susceptible cell lines (Huh7, hACE2-293T-293T, Vero, and LLC-MK2) and 14 cell lines overexpressing ACE2 from different species. Mutant strains did not show increased infectivity or cross-species transmission. Neutralization activity against these pseudoviruses was evaluated using mouse serum and 11 monoclonal antibodies. The neutralizing activity of immunized mouse serum was not significantly reduced with the mutant strains, but the mutant strains from Portugal could evade nine of the 11 monoclonal antibodies tested. Neutralization resistance was mainly caused by the mutations S477N, N439K, and N501Y in the spike-receptor binding domain. These findings emphasize the importance of SARS-CoV-2 mutation tracking in different regions for epidemic prevention and control.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Humans , Mice , Mutation , Portugal/epidemiology , Spike Glycoprotein, Coronavirus/genetics
19.
Signal Transduct Target Ther ; 7(1): 18, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1639142

ABSTRACT

Emerging SARS-CoV-2 variants are the most serious problem for COVID-19 prophylaxis and treatment. To determine whether the SARS-CoV-2 vaccine strain should be updated following variant emergence like seasonal flu vaccine, the changed degree on antigenicity of SARS-CoV-2 variants and H3N2 flu vaccine strains was compared. The neutralization activities of Alpha, Beta and Gamma variants' spike protein-immunized sera were analysed against the eight current epidemic variants and 20 possible variants combining the top 10 prevalent RBD mutations based on the Delta variant, which were constructed using pseudotyped viruses. Meanwhile, the neutralization activities of convalescent sera and current inactivated and recombinant protein vaccine-elicited sera were also examined against all possible Delta variants. Eight HA protein-expressing DNAs elicited-animal sera were also tested against eight pseudotyped viruses of H3N2 flu vaccine strains from 2011-2019. Our results indicate that the antigenicity changes of possible Delta variants were mostly within four folds, whereas the antigenicity changes among different H3N2 vaccine strains were approximately 10-100-fold. Structural analysis of the antigenic characterization of the SARS-CoV-2 and H3N2 mutations supports the neutralization results. This study indicates that the antigenicity changes of the current SARS-CoV-2 may not be sufficient to require replacement of the current vaccine strain.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19 Vaccines/metabolism , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Substitution , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Binding Sites , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Gene Expression , Humans , Immune Sera/chemistry , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/metabolism , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
20.
J Med Virol ; 94(5): 2108-2125, 2022 05.
Article in English | MEDLINE | ID: covidwho-1627779

ABSTRACT

Variants of SARS-CoV-2 continue to emerge, posing great challenges in outbreak prevention and control. It is important to understand in advance the impact of possible variants of concern (VOCs) on infectivity and antigenicity. Here, we constructed one or more of the 15 high-frequency naturally occurring amino acid changes in the receptor-binding domain (RBD) of Alpha, Beta, and Gamma variants. A single mutant of A520S, V367F, and S494P in the above three VOCs enhanced infectivity in ACE2-overexpressing 293T cells of different species, LLC-MK2 and Vero cells. Aggregation of multiple RBD mutations significantly reduces the infectivity of the possible three VOCs. Regarding neutralization, it is noteworthy that E484K, N501Y, K417N, and N439K predispose to monoclonal antibodies (mAbs) protection failure in the 15 high-frequency mutations. Most importantly, almost all possible VOCs (single RBD mutation or aggregation of multiple mutations) showed no more than a fourfold decrease in neutralizing activity with convalescent sera, vaccine sera, and immune sera of guinea pigs with different immunogens, and no significant antigenic drift was formed. In conclusion, our pseudovirus results could reduce the concern that the aggregation of multiple high-frequency mutations in the RBD of the spike protein of the three VOCs would lead to severe antigenic drift, and this would provide value for vaccine development strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , COVID-19/therapy , Chlorocebus aethiops , Guinea Pigs , Humans , Immunization, Passive , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL