Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Viruses ; 14(12):2820, 2022.
Article in English | MDPI | ID: covidwho-2163629

ABSTRACT

Background and Methods: To investigate virus diversity in hot zones of probable pathogen spillover, 54 oral-fecal swabs were processed from five bat species collected from three cave systems in Kenya, using metagenome sequencing. Results: Viruses belonging to the Astroviridae, Circoviridae, Coronaviridae, Dicistroviridae, Herpesviridae and Retroviridae were detected, with unclassified viruses. Retroviral sequences were prevalent;74.1% of all samples were positive, with distinct correlations between virus, site and host bat species. Detected retroviruses comprised Myotis myotis, Myotis ricketti, Myotis daubentonii and Galidia endogenous retroviruses, murine leukemia virus-related virus and Rhinolophus ferrumequinum retrovirus (RFRV). A near-complete genome of a local RFRV strain with identical genome organization and 2.8% nucleotide divergence from the prototype isolate was characterized. Bat coronavirus sequences were detected with a prevalence of 24.1%, where analyses on the ORF1ab region revealed a novel alphacoronavirus lineage. Astrovirus sequences were detected in 25.9%of all samples, with considerable diversity. In 9.2% of the samples, other viruses including Actinidia yellowing virus 2, bat betaherpesvirus, Bole tick virus 4, Cyclovirus and Rhopalosiphum padi virus were identified. Conclusions: Further monitoring of bats across Kenya is essential to facilitate early recognition of possibly emergent zoonotic viruses.

2.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2147793

ABSTRACT

Background Foreign imported patients and within-household transmission have been the focus and difficulty of coronavirus disease 2019 (COVID-19) prevention and control, which has also posed challenges to border areas' management. However, household transmission caused by foreign imported cases has not been reported in China's border areas. This study aimed to reveal a clear family clustering transmission chain of COVID-19 caused by contact with Myanmar refugees along the China–Myanmar border during an outbreak in October to November 2021. Methods During the outbreak, detailed epidemiological investigations were conducted on confirmed patients with COVID-19 and their close contacts in daily activities. Patients were immediately transported to a designated hospital for treatment and quarantine, and their close contacts were quarantined at designated sites. Regular nucleic acid testing and SARS-CoV-2 antibody testing were provided to them. Results A clear four-generation family clustering transmission involving five patients with COVID-19 was found along the China–Myanmar border. The index case (Patient A) was infected by brief conversations with Myanmar refugees across border fences during work. His wife (Patient B) and 9-month-old daughter (Patient C) were second-generation cases infected by daily contact with him. His 2-year-old daughter (Patient D) was the third-generation case infected by her mother and sister during quarantine in the same room and then transmitted the virus to her grandmother (Patient E, the fourth-generation case) who looked after her after Patients B and C were diagnosed and transported to the hospital. The household secondary attack rate was 80.0%, the average latent period was 4 days, and the generation time was 3 days. Ten of 942 close contacts (1.1%) of this family had positive IgM antibody during the medical observation period. In total 73.9% (696/942) of them were positive for IgG antibody and 8.3% (58/696) had IgG levels over 20 S/CO (optical density of the sample/cut-off value of the reagent). Conclusion This typical transmission chain indicated that it is essential to strengthen COVID-19 prevention and control in border areas, and explore more effective children care approaches in quarantine sites.

3.
J Med Virol ; 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2127880

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel subset of coronavirus that causes coronavirus disease 2019 (COVID-19), but vaccine development is hampered by the high mutation of virus This article is protected by copyright. All rights reserved.

4.
Disease Surveillance ; 37(9):1192-1197, 2022.
Article in Chinese | GIM | ID: covidwho-2143864

ABSTRACT

Objective: To understand the molecular epidemiological characteristics of COVID-19 in Ningxia, and provide evidence for the surveillance, prevention and control of COVID-19.

5.
Nat Commun ; 13(1): 6480, 2022 Oct 29.
Article in English | MEDLINE | ID: covidwho-2115515

ABSTRACT

Fast, inexpensive, and multiplexed detection of multiple nucleic acids is of great importance to human health, yet it still represents a significant challenge. Herein, we propose a nucleic acid testing platform, named MiCaR, which couples a microfluidic device with CRISPR-Cas12a and multiplex recombinase polymerase amplification. With only one fluorescence probe, MiCaR can simultaneously test up to 30 nucleic acid targets through microfluidic space coding. The detection limit achieves 0.26 attomole, and the multiplexed assay takes only 40 min. We demonstrate the utility of MiCaR by efficiently detecting the nine HPV subtypes targeted by the 9-valent HPV vaccine, showing a sensitivity of 97.8% and specificity of 98.1% in the testing of 100 patient samples at risk for HPV infection. Additionally, we also show the generalizability of our approach by successfully testing eight of the most clinically relevant respiratory viruses. We anticipate this effective, undecorated and versatile platform to be widely used in multiplexed nucleic acid detection.


Subject(s)
Nucleic Acids , Recombinases , Humans , CRISPR-Cas Systems/genetics , Microfluidics , Nucleic Acid Amplification Techniques , Nucleotidyltransferases
6.
Front Public Health ; 10: 1038017, 2022.
Article in English | MEDLINE | ID: covidwho-2109888

ABSTRACT

COVID-19, referred to as new coronary pneumonia, is an acute infectious disease caused by a new type of coronavirus SARS-CoV-2. To evaluate the effect of integrated Chinese medicine and Western medicine in patients with COVID-19 from overseas. Data were collected from 178 COVID-19 patients overseas at First Affiliated Hospital of Xiamen University from April 1, 2021 to July 31, 2021. These patients received therapy of integrated Chinese medicine and western medicine. Demographic data and clinical characteristics were extracted and analyzed. In addition, the prescription which induced less length of PCR positive days and hospitalization days than the median value was obtained. The top 4 frequently used Chinese medicine and virus-related genes were analyzed by network pharmacology and bioinformatics analysis. According to the chest computed tomography (CT) measurement, abnormal lung findings were observed in 145 subjects. The median length of positive PCR/hospitalization days was 7/7 days for asymptomatic subjects, 14/24 days for mild subjects, 10/15 days for moderate subjects, and 14/20 days for severe subjects. The most frequently used Chinese medicine were Scutellaria baicalensis (Huangqin), Glycyrrhiza uralensis (Gancao), Bupleurum chinense (Chaihu), and Pinellia ternata (Banxia). The putative active ingredients were baicalin, stigmasterol, sigmoidin-B, cubebin, and troxerutin. ACE, SARS-CoV-2 3CL, SARS-CoV-2 Spike, SARS-CoV-2 ORF7a, and caspase-6 showed good binding properties to active ingredients. In conclusion, the clinical results showed that integrated Chinese medicine and Western medicine are effective in treating COVID-19 patients from overseas. Based on the clinical outcomes, the putative ingredients from Chinese medicine and the potential targets of SARS-CoV-2 were provided, which could provide a reference for the clinical application of Chinese medicine in treating COVID-19 worldwide.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Retrospective Studies , Medicine, Chinese Traditional , Hospitalization
7.
J Transp Geogr ; 105: 103478, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2095721
8.
Phytomedicine ; : 154527, 2022.
Article in English | ScienceDirect | ID: covidwho-2086623

ABSTRACT

Background The novel coronavirus pneumonia (COVID-19) has spread rapidly around the world. As a member against the epidemic, Qingfei Paidu Decoction (QFPDD) has been approved for the treatment of COVID-19 in China. However, its antiviral mechanism was still largely unclear. Purpose An integrated strategy was used to explore the antiviral mechanisms of QFPDD in cold and damp environment, including pharmacokinetic (PK), network pharmacology, metabolomics and protein verification. Methods Firstly, the pharmacokinetic study (PK) of the prototype absorbed ingredients were analyzed by UHPLC-QqQ-MS. Secondly, the metabolomics analysis of the endogenous constituents was carried out. Based on the aforementioned results, an integrated network was constructed to identify the curative components, crucial endogenous differential metabolites and related pathways. Finally, the validation tests were implemented by molecular docking and western blotting (WB). Results According to the pharmacokinetic behaviors analysis of 31 components in vivo, the flavonoids presented much more longer residence time and higher exposure compared with the other compounds. The efficacy and antiviral mechanism of QFPDD were verified by the poly-pharmacology, metabolomics, molecular docking and WB. For the occurrence of metabolic disorder, the change of amino acid transporters should not be neglected. Afterward, 8 curative compounds, 6 key genes and corresponding metabolic pathways were filtered by compound-reaction-enzyme-gene network. The molecular docking verified that the active ingredients bound to the relevant targets well. Conclusion In the present study, an in vivo comprehensive pharmacokinetic behaviors of QFPDD was analyzed for the first time. The results illustrated that QFPDD could exhibit immune regulation, anti-infection, anti-inflammation and metabolic disorder to perform a corresponding therapeutic effect. Moreover, our findings highlighted the roles of amino acid transporters in the coronavirus infection situation.

9.
Virology ; 576: 105-110, 2022 11.
Article in English | MEDLINE | ID: covidwho-2061964

ABSTRACT

As SARS-CoV-2 and influenza viruses co-circulate, co-infections with these viruses generate an increasing concern to public health. To evaluate the prevalence and clinical impacts of SARS-CoV-2 and influenza A virus co-infections during the 2021-2022 influenza season, SARS-CoV-2-positive samples from 462 individuals were collected from October 2021 to January 2022. Of these individuals, 152 tested positive for influenza, and the monthly co-infection rate ranged from 7.1% to 48%. Compared to the Delta variant, individuals infected with Omicron were less likely to be co-infected and hospitalized, and individuals who received influenza vaccines were less likely to become co-infected. Three individuals had two samples collected on different dates, and all three developed a co-infection after their initial SARS-CoV-2 infection. This study demonstrates high prevalence of co-infections in central Missouri during the 2021-2022 influenza season, differences in co-infection prevalence between the Delta and the Omicron waves, and the importance of influenza vaccinations against co-infections.


Subject(s)
COVID-19 , Coinfection , Influenza A virus , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , SARS-CoV-2 , Coinfection/epidemiology , Cross-Sectional Studies , Seasons , Missouri/epidemiology , COVID-19/epidemiology , Influenza A virus/genetics
10.
Virology ; 2022.
Article in English | EuropePMC | ID: covidwho-2046850

ABSTRACT

As SARS-CoV-2 and influenza viruses co-circulate, co-infections with these viruses generate an increasing concern to public health. To evaluate the prevalence and clinical impacts of SARS-CoV-2 and influenza A virus co-infections during the 2021–2022 influenza season, SARS-CoV-2-positive samples from 462 individuals were collected from October 2021 to January 2022. Of these individuals, 152 tested positive for influenza, and the monthly co-infection rate ranged from 7.1% to 48%. Compared to the Delta variant, individuals infected with Omicron were less likely to be co-infected and hospitalized, and individuals who received influenza vaccines were less likely to become co-infected. Three individuals had two samples collected on different dates, and all three developed a co-infection after their initial SARS-CoV-2 infection. This study demonstrates high prevalence of co-infections in central Missouri during the 2021–2022 influenza season, differences in co-infection prevalence between the Delta and the Omicron waves, and the importance of influenza vaccinations against co-infections.

11.
International journal of endocrinology ; 2022, 2022.
Article in English | EuropePMC | ID: covidwho-2045499

ABSTRACT

Home quarantine due to the global coronavirus disease 2019 (COVID-19) pandemic has had a significant impact on children. Lifestyle changes have led to an increase in precocious puberty (PP) among girls, and the underlying risk factors for this remain unclear. Thus, we aimed to assess the influence of environmental, genetic, nutritional, and other lifestyle factors on the risk of PP in girls. We evaluated the incidence of new-onset PP in girls during home quarantine for COVID-19 and analyzed the potential risk factors. This was a retrospective questionnaire and medical record-based study involving 22 representative medical units from 13 cities in Henan Province, China. Girls with new-onset PP (central precocious puberty, 58;premature thelarche, 58;age, 5–9 years) between February 2020 and May 2020 were included, along with 124 healthy, age-matched controls. The number of new-onset PP cases reported during the study period was compared with that reported between February and May in 2018 and 2019. Patients' families completed a questionnaire to assess potential risk factors. There was a 5.01- and 3.14-fold increase in the number of new-onset PP cases from 2018 to 2020 and from 2019 to 2020, respectively;the differences were statistically significant (p < 0.01). High-risk factors for PP included longer time spent using electronic devices, decreased exercise time, higher body mass index, vitamin D deficiency, young age (<12 years) of mother during menarche, consumption of fried food and processed meat, residence in rural areas, and consumption of off-season fruits. Thus, we found that lifestyle changes caused due to the COVID-19 pandemic led to a significant increase in PP in girls. Management of the risk factors identified in this study may help in PP prevention.

12.
Sep Purif Technol ; 303: 122193, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2042131

ABSTRACT

As Diphenhydramine (DPH) has been considered as a drug to treat SARS-CoV-2, the degradation of DPH from water was investigated and evaluated in this study by adopting an advanced oxidation/advanced reduction process - the UV/sulfite process. The UV/sulfite system was able to eliminate DPH within 6 mins under UV254nm and 1.0 mM sulfite. It was observed that the presence of N O 3 - , N O 2 - , C l - , H C O 3 - , and S O 4 2 - anions in water can affect the performance of UV/Sulfite degradation system. The mechanism of UV/sulfite/anions was evaluated which the presence of N O 3 - in UV/sulfite process has revealed faster initial decay rate but lower final DPH removal. It was observed that the UV/Sulfite process was extremely sensitive to pH as the dissociation of ion species varied among pH. The reaction became sluggish in acidic solution due to the dissociation of less reactive species such as HSO3 -. In alkaline solution, SO3 2- was the dominant species, producing powerful SO 3 ∙ - and e aq - when activated by UV at 254 nm. By conducting LC/MS analysis, the degradation pathway was proposed and can be summarized into four main pathways: hydroxylation, side chain cleavage, losing aromatic ring or ring opening. Scavenging tests were also carried out and validated the presence of various radicals contributing to the reaction, including e aq - , H˙, OH˙, SO3 ˙-, O2 •- and SO4 ˙-.

13.
Front Immunol ; 13: 919958, 2022.
Article in English | MEDLINE | ID: covidwho-2039675

ABSTRACT

Background: Androgen sensitivity, which was established as the leading etiology of androgenetic alopecia (AGA) and benign prostatic hyperplasia (BPH), plays an important role in SARS-CoV-2 infection. Vaccination is essential for AGA and BPH patients in view of the high risk from SARS-CoV-2 infection. Purpose: We aimed to investigate the associated factors for SARS-CoV-2 vaccination and its side effects in populations with AGA and BPH. Method: We collected the data on SARS-CoV-2 vaccination and adverse reactions of male AGA and BPH patients visited the outpatient of Xiangya hospital by telephone and web-based questionnaires. Vaccination rate and adverse reactions were compared by different vaccine types and use of anti-androgen therapy. Result: A total of 457 AGA patients and 397 BPH patients were recruited in this study. Among which, 92.8% AGA patients and 61.0% BPH patients had at least the first dose of SARS-CoV-2 vaccination (p < 0.001). Having comorbidities and use of anti-androgen therapy increased the risk of un-vaccination among AGA by 2.875 and 3.729 times, respectively (p < 0.001). Around 31.1% AGA patients and 9.5% BPH patients presented adverse reactions, which were mostly mild. Anti-androgen therapy increased the inclination of injection site pain after vaccination (18.7% vs 11.9%; OR: 1.708, 95% CI: 1.088-2.683, p = 0.019). Conclusion: Co-existence of other systemic diseases and anti-androgen therapy were the limiting factors for SARS-CoV-2 unvaccination, especially in AGA patients. The importance of SARS-CoV-2 vaccines should be strengthened and popularized in androgen sensitive phenotypes.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions , Prostatic Hyperplasia , Vaccines , Alopecia/complications , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Drug-Related Side Effects and Adverse Reactions/complications , Humans , Hyperplasia , Male , Phenotype , Prostate , Prostatic Hyperplasia/drug therapy , SARS-CoV-2 , Vaccination/adverse effects
14.
Chinese Journal of Virology ; 36(6):1004-1008, 2020.
Article in Chinese | GIM | ID: covidwho-2034524

ABSTRACT

SARS-CoV-Z treated at 56 degrees C for 30 min can be inactivated effectively. However, the effect of heat treatment on subsequent detection of the RNA of SARS-CoV-2 by real-time reverse transcription-quantitative polymerase Chain reaction (RT-qPCR) has not been reported. We filled this knowledge gap in present study. We used five SARS'CoV-Z-positive throat swabs. Each throat swab was divided into four parts and assigned to a group: control;56 degrees C for 30 min;56 degrees C for 45 min;56 degrees C for 60 min. After heat treatment, SARS-CoV-Z RNA was extracted and detected by RT-qPCR (absolute quantitation using a standard curve). We found that SARS- CoV-Z RNA was reduced by ~40% after treatment at 56 degrees C for 30 ' 60 min. There was no significant difference (P > 0.05 for all) in the test results between the treatment groups (56 degrees C for 30 min;56 degrees C for 45 min;56 degrees C for 60 min). Our study suggested that SARS-CoV-Z specimens could be inactivated at 56 degrees C for 30 min, before RNA extraction and RT-qPCR detection, which could protect the safety of personnel and the environment during testing. Heat inactivation had a limited effect upon RT-qPCR detection but it should be used with caution if the specimen result is near the critical value.

16.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2033935

ABSTRACT

Background Androgen sensitivity, which was established as the leading etiology of androgenetic alopecia (AGA) and benign prostatic hyperplasia (BPH), plays an important role in SARS-CoV-2 infection. Vaccination is essential for AGA and BPH patients in view of the high risk from SARS-CoV-2 infection. Purpose We aimed to investigate the associated factors for SARS-CoV-2 vaccination and its side effects in populations with AGA and BPH. Method We collected the data on SARS-CoV-2 vaccination and adverse reactions of male AGA and BPH patients visited the outpatient of Xiangya hospital by telephone and web-based questionnaires. Vaccination rate and adverse reactions were compared by different vaccine types and use of anti-androgen therapy. Result A total of 457 AGA patients and 397 BPH patients were recruited in this study. Among which, 92.8% AGA patients and 61.0% BPH patients had at least the first dose of SARS-CoV-2 vaccination (p < 0.001). Having comorbidities and use of anti-androgen therapy increased the risk of un-vaccination among AGA by 2.875 and 3.729 times, respectively (p < 0.001). Around 31.1% AGA patients and 9.5% BPH patients presented adverse reactions, which were mostly mild. Anti-androgen therapy increased the inclination of injection site pain after vaccination (18.7% vs 11.9%;OR: 1.708, 95% CI: 1.088-2.683, p = 0.019). Conclusion Co-existence of other systemic diseases and anti-androgen therapy were the limiting factors for SARS-CoV-2 unvaccination, especially in AGA patients. The importance of SARS-CoV-2 vaccines should be strengthened and popularized in androgen sensitive phenotypes.

17.
Clin Transl Med ; 12(9): e1016, 2022 09.
Article in English | MEDLINE | ID: covidwho-2027332

ABSTRACT

BACKGROUND: To determine an appropriate dose of, and immunization schedule for, a vaccine SCoK against COVID-19 for an efficacy study; herein, we conducted randomized controlled trials to assess the immunogenicity and safety of this vaccine in adults. METHODS: These randomized, double-blind, placebo-controlled phase 1 and 2 trials of vaccine SCoK were conducted in Binhai District, Yan City, Jiangsu Province, China. Younger and older adult participants in phase 1 and 2 trials were sequentially recruited into different groups to be intramuscularly administered 20 or 40 µg vaccine SCoK or placebo. Participants were enrolled into our phase 1 and 2 studies to receive vaccine or placebo. RESULTS: No serious vaccine-related adverse events were observed in either trial. In both trials, local and systemic adverse reactions were absent or mild in most participants. In our phase 1 and 2 studies, the vaccine induced significantly increased neutralizing antibody responses to pseudovirus and live SARS-CoV-2. The vaccine induced significant neutralizing antibody responses to live SARS-CoV-2 on day 14 after the last immunization, with NT50s of 80.45 and 92.46 in participants receiving 20 and 40 µg doses, respectively; the seroconversion rates were 95.83% and 100%. The vaccine SCoK showed a similar safety and immunogenicity profiles in both younger participants and older participants. The vaccine showed better immunogenicity in phase 2 than in phase 1 clinical trial. Additionally, the incidence of adverse reactions decreased significantly in phase 2 clinical trial. The vaccine SCoK was well tolerated and immunogenic.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Randomized Controlled Trials as Topic , SARS-CoV-2
18.
Front Public Health ; 10: 962214, 2022.
Article in English | MEDLINE | ID: covidwho-2022987

ABSTRACT

Background: Imported COVID-19 patients posed great challenges to border areas' COVID-19 control. However, research was scarce to reveal epidemiological characteristics of COVID-19 in border areas. This study aimed to explore the detailed transmission chains, and reveal epidemiological and clinical characteristics of the largest COVID-19 outbreak caused by Delta variant of concern (VOC) occurred in the China-Myanmar border area. Methods: During the outbreak from July to September, 2021 in Ruili City, Yunnan Province, China, epidemiological investigation data and clinical-related data pertaining to confirmed COVID-19 patients were collected. Patients' contact history data and viral gene sequencing were used for inference of transmission chains. Sociodemographic and epidemiological characteristics, cycle threshold (Ct) value, and antibodies level were compared between patients who were vaccinated against COVID-19 or not. Results: A total of 117 COVID-19 patients were confirmed during the outbreak, among which 86 (73.5%) were breakthrough infections. These patients evenly split between Chinese and Myanmar people (50.4% vs. 49.6%). Most of these patients were mild (45.3%) or moderate (48.7%) infections with no death reported. Multi-source of infection led to 16 transmission chains with a maximum of 45 patients in one chain. Patients vaccinated against COVID-19 before infection had relatively higher antibodies (IgM and IgG) levels and more rapid response to infection than non-vaccinated patients (p < 0.05). Conclusion: Land border areas have greater risks of imported COVID-19 and more complicated epidemics. It should be cautious in formulating entry and exit requirements for border areas. The immune effect of COVID-19 vaccines and related mechanism should be further explored.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19 Vaccines , China/epidemiology , Disease Outbreaks , Humans , Myanmar/epidemiology , SARS-CoV-2
19.
Vaccines (Basel) ; 10(8)2022 Aug 08.
Article in English | MEDLINE | ID: covidwho-1979445

ABSTRACT

INTRODUCTION: Vaccination is one of the most effective ways to control the COVID-19 pandemic. However, as the number of people vaccinated against COVID-19 continues to increase, there are more reports on the safety of vaccines. So far, there have been no reported cases of spinal infection associated with COVID-19 vaccination. Recently, we admitted a patient who developed cervical Staphylococcus aureus infection resulting in high paraplegia after receiving the third dose of COVID-19 vaccine when the symptoms of cold did not completely disappear. CASE PRESENTATION: The patient was a 70-year-old man who received the third injection of COVID-19 vaccine when the cold symptoms were not completely gone. On the day after the injection, the patient developed severe neck and shoulder pain, accompanied by numbness and fatigue in the limbs. MRI examination of the cervical spine on day 6 after vaccination showed no obvious signs of infection. The patient had progressive weakness in the extremities. On the ninth day after vaccination, the patient developed paralysis of both lower limbs and significant sensory loss. Cervical abscess and cervical spinal cord injury were considered for cervical CT and MRI examination on the 15th day after vaccination. We used an anterior approach to remove as much of the lesion as possible. Staphylococcus aureus was detected and antibiotic treatment was continued after surgery. The patient's pain symptoms were significantly relieved, which prevented the abscess from further pressing the spinal cord and provided possible conditions for the recovery of neurological function in the later stage. CONCLUSION: This case is the first reported cervical Staphylococcus aureus infection resulting in high paraplegia after receiving the third dose of COVID-19 vaccine with low immunity. This case raises awareness of this rare but potentially life-threatening adverse reaction, and reminds people to hold off when their immune system is weakened.

20.
Signal Transduct Target Ther ; 7(1): 256, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1960334

ABSTRACT

A steep rise in Omicron reinfection cases suggests that this variant has increased immune evasion ability. To evaluate its antigenicity relationship with other variants, antisera from guinea pigs immunized with spike protein of SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) were cross-tested against pseudotyped variants. The neutralization activity against Omicron was markedly reduced when other VOCs or VOIs were used as immunogens, and Omicron (BA.1)-elicited sera did not efficiently neutralize the other variants. However, a Beta or Omicron booster, when administered as the 4th dose 3-months after the 3rd dose of any of the variants, could elicit broad neutralizing antibodies against all of the current variants including Omicron BA.1. Further analysis with 280 available antigen-antibody structures and quantification of immune escape from 715 reported neutralizing antibodies provide explanations for the observed differential immunogenicity. Three distinct clades predicted using an in silico algorithm for clustering of sarbecoviruses based on immune escape provide key information for rational design of vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral/genetics , COVID-19/genetics , Cluster Analysis , Guinea Pigs , Humans , Membrane Glycoproteins , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
SELECTION OF CITATIONS
SEARCH DETAIL