Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Med Virol ; 2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-1756617

ABSTRACT

SARS-CoV-2 has evolved into a panel of variants of concern (VOCs) and constituted a sustained threat to global health. The wildtype (WT) SARS-CoV-2 isolates fail to infect mice, while the Beta variant, one of the VOCs, has acquired the capability to infect standard laboratory mice, raising a spreading risk of SARS-CoV-2 from humans to mice. However, the infectivity and pathogenicity of other VOCs in mice remain not fully understood. In this study, we systematically investigated the infectivity and pathogenicity of three VOCs, Alpha, Beta, and Delta, in mice in comparison with two well-understood SARS-CoV-2 mouse-adapted strains, MASCp6 and MASCp36, sharing key mutations in the receptor-binding domain (RBD) with Alpha or Beta, respectively. Our results showed that the Beta variant had the strongest infectivity and pathogenicity among the three VOCs, while the Delta variant only caused limited replication and mild pathogenic changes in the mouse lung, which is much weaker than what the Alpha variant did. Meanwhile, Alpha showed comparable infectivity in lungs in comparison with MASCp6, and Beta only showed slightly lower infectivity in lungs when compared with MASCp36. These results indicated that all three VOCs have acquired the capability to infect mice, highlighting the ongoing spillover risk of SARS-CoV-2 from humans to mice during the continued evolution of SARS-CoV-2, and that the key amino acid mutations in the RBD of mouse-adapted strains may be referenced as an early-warning indicator for predicting the spillover risk of newly emerging SARS-CoV-2 variants.

2.
Lancet Microbe ; 3(3): e193-e202, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1721237

ABSTRACT

Background: Safe and effective vaccines are urgently needed to end the COVID-19 pandemic caused by SARS-CoV-2 infection. We aimed to assess the preliminary safety, tolerability, and immunogenicity of an mRNA vaccine ARCoV, which encodes the SARS-CoV-2 spike protein receptor-binding domain (RBD). Methods: This single centre, double-blind, randomised, placebo-controlled, dose-escalation, phase 1 trial of ARCoV was conducted at Shulan (Hangzhou) hospital in Hangzhou, Zhejiang province, China. Healthy adults aged 18-59 years negative for SARS-CoV-2 infection were enrolled and randomly assigned using block randomisation to receive an intramuscular injection of vaccine or placebo. Vaccine doses were 5 µg, 10 µg, 15 µg, 20 µg, and 25 µg. The first six participants in each block were sentinels and along with the remaining 18 participants, were randomly assigned to groups (5:1). In block 1 sentinels were given the lowest vaccine dose and after a 4-day observation with confirmed safety analyses, the remaining 18 participants in the same dose group proceeded and sentinels in block 2 were given their first administration on a two-dose schedule, 28 days apart. All participants, investigators, and staff doing laboratory analyses were masked to treatment allocation. Humoral responses were assessed by measuring anti-SARS-CoV-2 RBD IgG using a standardised ELISA and neutralising antibodies using pseudovirus-based and live SARS-CoV-2 neutralisation assays. SARS-CoV-2 RBD-specific T-cell responses, including IFN-γ and IL-2 production, were assessed using an enzyme-linked immunospot (ELISpot) assay. The primary outcome for safety was incidence of adverse events or adverse reactions within 60 min, and at days 7, 14, and 28 after each vaccine dose. The secondary safety outcome was abnormal changes detected by laboratory tests at days 1, 4, 7, and 28 after each vaccine dose. For immunogenicity, the secondary outcome was humoral immune responses: titres of neutralising antibodies to live SARS-CoV-2, neutralising antibodies to pseudovirus, and RBD-specific IgG at baseline and 28 days after first vaccination and at days 7, 15, and 28 after second vaccination. The exploratory outcome was SARS-CoV-2-specific T-cell responses at 7 days after the first vaccination and at days 7 and 15 after the second vaccination. This trial is registered with www.chictr.org.cn (ChiCTR2000039212). Findings: Between Oct 30 and Dec 2, 2020, 230 individuals were screened and 120 eligible participants were randomly assigned to receive five-dose levels of ARCoV or a placebo (20 per group). All participants received the first vaccination and 118 received the second dose. No serious adverse events were reported within 56 days after vaccination and the majority of adverse events were mild or moderate. Fever was the most common systemic adverse reaction (one [5%] of 20 in the 5 µg group, 13 [65%] of 20 in the 10 µg group, 17 [85%] of 20 in the 15 µg group, 19 [95%] of 20 in the 20 µg group, 16 [100%] of 16 in the 25 µg group; p<0·0001). The incidence of grade 3 systemic adverse events were none (0%) of 20 in the 5 µg group, three (15%) of 20 in the 10 µg group, six (30%) of 20 in the 15 µg group, seven (35%) of 20 in the 20 µg group, five (31%) of 16 in the 25 µg group, and none (0%) of 20 in the placebo group (p=0·0013). As expected, the majority of fever resolved in the first 2 days after vaccination for all groups. The incidence of solicited systemic adverse events was similar after administration of ARCoV as a first or second vaccination. Humoral immune responses including anti-RBD IgG and neutralising antibodies increased significantly 7 days after the second dose and peaked between 14 and 28 days thereafter. Specific T-cell response peaked between 7 and 14 days after full vaccination. 15 µg induced the highest titre of neutralising antibodies, which was about twofold more than the antibody titre of convalescent patients with COVID-19. Interpretation: ARCoV was safe and well tolerated at all five doses. The acceptable safety profile, together with the induction of strong humoral and cellular immune responses, support further clinical testing of ARCoV at a large scale. Funding: National Key Research and Development Project of China, Academy of Medical Sciences China, National Natural Science Foundation China, and Chinese Academy of Medical Sciences.

3.
Innovation (N Y) ; 3(2): 100221, 2022 Mar 29.
Article in English | MEDLINE | ID: covidwho-1713028

ABSTRACT

The highly pathogenic and readily transmissible SARS-CoV-2 has caused a global coronavirus pandemic, urgently requiring effective countermeasures against its rapid expansion. All available vaccine platforms are being used to generate safe and effective COVID-19 vaccines. Here, we generated a live-attenuated candidate vaccine strain by serial passaging of a SARS-CoV-2 clinical isolate in Vero cells. Deep sequencing revealed the dynamic adaptation of SARS-CoV-2 in Vero cells, resulting in a stable clone with a deletion of seven amino acids (N679SPRRAR685) at the S1/S2 junction of the S protein (named VAS5). VAS5 showed significant attenuation of replication in multiple human cell lines, human airway epithelium organoids, and hACE2 mice. Viral fitness competition assays demonstrated that VAS5 showed specific tropism to Vero cells but decreased fitness in human cells compared with the parental virus. More importantly, a single intranasal injection of VAS5 elicited a high level of neutralizing antibodies and prevented SARS-CoV-2 infection in mice as well as close-contact transmission in golden Syrian hamsters. Structural and biochemical analysis revealed a stable and locked prefusion conformation of the S trimer of VAS5, which most resembles SARS-CoV-2-3Q-2P, an advanced vaccine immunogen (NVAX-CoV2373). Further systematic antigenic profiling and immunogenicity validation confirmed that the VAS5 S trimer presents an enhanced antigenic mimic of the wild-type S trimer. Our results not only provide a potent live-attenuated vaccine candidate against COVID-19 but also clarify the molecular and structural basis for the highly attenuated and super immunogenic phenotype of VAS5.

4.
Nat Med ; 26(6): 845-848, 2020 06.
Article in English | MEDLINE | ID: covidwho-1641979

ABSTRACT

We report acute antibody responses to SARS-CoV-2 in 285 patients with COVID-19. Within 19 days after symptom onset, 100% of patients tested positive for antiviral immunoglobulin-G (IgG). Seroconversion for IgG and IgM occurred simultaneously or sequentially. Both IgG and IgM titers plateaued within 6 days after seroconversion. Serological testing may be helpful for the diagnosis of suspected patients with negative RT-PCR results and for the identification of asymptomatic infections.


Subject(s)
Antibodies, Viral/blood , Antibody Formation/drug effects , Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adult , Aged , Antibody Formation/immunology , Antiviral Agents/therapeutic use , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2
5.
Signal Transduct Target Ther ; 6(1): 438, 2021 12 24.
Article in English | MEDLINE | ID: covidwho-1585880

ABSTRACT

Messenger RNA (mRNA) vaccine technology has shown its power in preventing the ongoing COVID-19 pandemic. Two mRNA vaccines targeting the full-length S protein of SARS-CoV-2 have been authorized for emergency use. Recently, we have developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor-binding domain (RBD) of SARS-CoV-2 (termed ARCoV), which confers complete protection in mouse model. Herein, we further characterized the protection efficacy of ARCoV in nonhuman primates and the long-term stability under normal refrigerator temperature. Intramuscular immunization of two doses of ARCoV elicited robust neutralizing antibodies as well as cellular response against SARS-CoV-2 in cynomolgus macaques. More importantly, ARCoV vaccination in macaques significantly protected animals from acute lung lesions caused by SARS-CoV-2, and viral replication in lungs and secretion in nasal swabs were completely cleared in all animals immunized with low or high doses of ARCoV. No evidence of antibody-dependent enhancement of infection was observed throughout the study. Finally, extensive stability assays showed that ARCoV can be stored at 2-8 °C for at least 6 months without decrease of immunogenicity. All these promising results strongly support the ongoing clinical trial.


Subject(s)
COVID-19 Vaccines/pharmacology , COVID-19/immunology , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , /pharmacology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Humans , Macaca fascicularis , Vero Cells , /immunology
9.
Cell Res ; 31(1): 25-36, 2021 01.
Article in English | MEDLINE | ID: covidwho-1387275

ABSTRACT

Structural principles underlying the composition and synergistic mechanisms of protective monoclonal antibody cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic antibody cocktail against SARS-CoV-2. On the basis of our previously identified humanized cross-neutralizing antibody H014, we systematically analyzed a fully human naive antibody library and rationally identified a potent neutralizing antibody partner, P17, which confers effective protection in animal model. Cryo-EM studies dissected the nature of the P17 epitope, which is SARS-CoV-2 specific and distinctly different from that of H014. High-resolution structure of the SARS-CoV-2 spike in complex with H014 and P17, together with functional investigations revealed that in a two-antibody cocktail, synergistic neutralization was achieved by S1 shielding and conformational locking, thereby blocking receptor attachment and viral membrane fusion, conferring high potency as well as robustness against viral mutation escape. Furthermore, cluster analysis identified a hypothetical 3rd antibody partner for further reinforcing the cocktail as pan-SARS-CoVs therapeutics.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Epitopes/immunology , SARS-CoV-2/immunology , Single-Chain Antibodies/immunology , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/immunology , COVID-19/prevention & control , Chlorocebus aethiops , Disease Models, Animal , Humans , Single-Chain Antibodies/pharmacology , Vero Cells
10.
Cell Discov ; 7(1): 49, 2021 Jul 06.
Article in English | MEDLINE | ID: covidwho-1298837

ABSTRACT

SARS-CoV-2 infection causes a wide spectrum of clinical manifestations in humans, and olfactory dysfunction is one of the most predictive and common symptoms in COVID-19 patients. However, the underlying mechanism by which SARS-CoV-2 infection leads to olfactory disorders remains elusive. Herein, we demonstrate that intranasal inoculation with SARS-CoV-2 induces robust viral replication in the olfactory epithelium (OE), not the olfactory bulb (OB), resulting in transient olfactory dysfunction in humanized ACE2 (hACE2) mice. The sustentacular cells and Bowman's gland cells in the OE were identified as the major target cells of SARS-CoV-2 before invasion into olfactory sensory neurons (OSNs). Remarkably, SARS-CoV-2 infection triggers massive cell death and immune cell infiltration and directly impairs the uniformity of the OE structure. Combined transcriptomic and quantitative proteomic analyses revealed the induction of antiviral and inflammatory responses, as well as the downregulation of olfactory receptor (OR) genes in the OE from the infected animals. Overall, our mouse model recapitulates olfactory dysfunction in COVID-19 patients and provides critical clues for understanding the physiological basis for extrapulmonary manifestations of COVID-19.

12.
Cell Res ; 31(4): 404-414, 2021 04.
Article in English | MEDLINE | ID: covidwho-1054016

ABSTRACT

The newly identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a global health emergency because of its rapid spread and high mortality. The molecular mechanism of interaction between host and viral genomic RNA is yet unclear. We demonstrate herein that SARS-CoV-2 genomic RNA, as well as the negative-sense RNA, is dynamically N6-methyladenosine (m6A)-modified in human and monkey cells. Combined RIP-seq and miCLIP analyses identified a total of 8 m6A sites at single-base resolution in the genome. Especially, epidemic strains with mutations at these identified m6A sites have emerged worldwide, and formed a unique cluster in the US as indicated by phylogenetic analysis. Further functional experiments showed that m6A methylation negatively regulates SARS-CoV-2 infection. SARS-CoV-2 infection also triggered a global increase in host m6A methylome, exhibiting altered localization and motifs of m6A methylation in mRNAs. Altogether, our results identify m6A as a dynamic epitranscriptomic mark mediating the virus-host interaction.


Subject(s)
Adenosine/analogs & derivatives , Genome, Viral , SARS-CoV-2/genetics , Adenosine/metabolism , Animals , COVID-19/pathology , COVID-19/virology , Cell Line , Chlorocebus aethiops , DNA Methylation , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Mutagenesis, Site-Directed , Phylogeny , RNA, Messenger/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Vero Cells , Virus Replication
13.
Natl Sci Rev ; 8(3): nwaa297, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-990776

ABSTRACT

Receptor recognition and subsequent membrane fusion are essential for the establishment of successful infection by SARS-CoV-2. Halting these steps can cure COVID-19. Here we have identified and characterized a potent human monoclonal antibody, HB27, that blocks SARS-CoV-2 attachment to its cellular receptor at sub-nM concentrations. Remarkably, HB27 can also prevent SARS-CoV-2 membrane fusion. Consequently, a single dose of HB27 conferred effective protection against SARS-CoV-2 in two established mouse models. Rhesus macaques showed no obvious adverse events when administrated with 10 times the effective dose of HB27. Cryo-EM studies on complex of SARS-CoV-2 trimeric S with HB27 Fab reveal that three Fab fragments work synergistically to occlude SARS-CoV-2 from binding to the ACE2 receptor. Binding of the antibody also restrains any further conformational changes of the receptor binding domain, possibly interfering with progression from the prefusion to the postfusion stage. These results suggest that HB27 is a promising candidate for immuno-therapies against COVID-19.

14.
Cell Res ; 31(1): 25-36, 2021 01.
Article in English | MEDLINE | ID: covidwho-952976

ABSTRACT

Structural principles underlying the composition and synergistic mechanisms of protective monoclonal antibody cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic antibody cocktail against SARS-CoV-2. On the basis of our previously identified humanized cross-neutralizing antibody H014, we systematically analyzed a fully human naive antibody library and rationally identified a potent neutralizing antibody partner, P17, which confers effective protection in animal model. Cryo-EM studies dissected the nature of the P17 epitope, which is SARS-CoV-2 specific and distinctly different from that of H014. High-resolution structure of the SARS-CoV-2 spike in complex with H014 and P17, together with functional investigations revealed that in a two-antibody cocktail, synergistic neutralization was achieved by S1 shielding and conformational locking, thereby blocking receptor attachment and viral membrane fusion, conferring high potency as well as robustness against viral mutation escape. Furthermore, cluster analysis identified a hypothetical 3rd antibody partner for further reinforcing the cocktail as pan-SARS-CoVs therapeutics.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Epitopes/immunology , SARS-CoV-2/immunology , Single-Chain Antibodies/immunology , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/immunology , COVID-19/prevention & control , Chlorocebus aethiops , Disease Models, Animal , Humans , Single-Chain Antibodies/pharmacology , Vero Cells
16.
Science ; 369(6511): 1603-1607, 2020 09 25.
Article in English | MEDLINE | ID: covidwho-690532

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has prioritized the development of small-animal models for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We adapted a clinical isolate of SARS-CoV-2 by serial passaging in the respiratory tract of aged BALB/c mice. The resulting mouse-adapted strain at passage 6 (called MASCp6) showed increased infectivity in mouse lung and led to interstitial pneumonia and inflammatory responses in both young and aged mice after intranasal inoculation. Deep sequencing revealed a panel of adaptive mutations potentially associated with the increased virulence. In particular, the N501Y mutation is located at the receptor binding domain (RBD) of the spike protein. The protective efficacy of a recombinant RBD vaccine candidate was validated by using this model. Thus, this mouse-adapted strain and associated challenge model should be of value in evaluating vaccines and antivirals against SARS-CoV-2.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Disease Models, Animal , Mice , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Administration, Intranasal , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Female , High-Throughput Nucleotide Sequencing , Humans , Immunogenicity, Vaccine , Lung/virology , Lung Diseases, Interstitial/virology , Mice, Inbred BALB C , Mice, Transgenic , Mutation , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Vaccines/administration & dosage , Virulence/genetics
17.
Cell ; 182(5): 1271-1283.e16, 2020 09 03.
Article in English | MEDLINE | ID: covidwho-666099

ABSTRACT

There is an urgent need for vaccines against coronavirus disease 2019 (COVID-19) because of the ongoing SARS-CoV-2 pandemic. Among all approaches, a messenger RNA (mRNA)-based vaccine has emerged as a rapid and versatile platform to quickly respond to this challenge. Here, we developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor binding domain (RBD) of SARS-CoV-2 as a vaccine candidate (called ARCoV). Intramuscular immunization of ARCoV mRNA-LNP elicited robust neutralizing antibodies against SARS-CoV-2 as well as a Th1-biased cellular response in mice and non-human primates. Two doses of ARCoV immunization in mice conferred complete protection against the challenge of a SARS-CoV-2 mouse-adapted strain. Additionally, ARCoV is manufactured as a liquid formulation and can be stored at room temperature for at least 1 week. ARCoV is currently being evaluated in phase 1 clinical trials.


Subject(s)
RNA, Messenger/genetics , RNA, Viral/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Female , HEK293 Cells , HeLa Cells , Humans , Immunogenicity, Vaccine , Injections, Intramuscular , Macaca fascicularis , Male , Mice , Mice, Inbred ICR , Nanoparticles/chemistry , RNA, Messenger/metabolism , RNA, Viral/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Th1 Cells/immunology , Vaccine Potency , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vero Cells , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
18.
Cell Host Microbe ; 28(1): 124-133.e4, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-378130

ABSTRACT

Since December 2019, a novel coronavirus SARS-CoV-2 has emerged and rapidly spread throughout the world, resulting in a global public health emergency. The lack of vaccine and antivirals has brought an urgent need for an animal model. Human angiotensin-converting enzyme II (ACE2) has been identified as a functional receptor for SARS-CoV-2. In this study, we generated a mouse model expressing human ACE2 (hACE2) by using CRISPR/Cas9 knockin technology. In comparison with wild-type C57BL/6 mice, both young and aged hACE2 mice sustained high viral loads in lung, trachea, and brain upon intranasal infection. Although fatalities were not observed, interstitial pneumonia and elevated cytokines were seen in SARS-CoV-2 infected-aged hACE2 mice. Interestingly, intragastric inoculation of SARS-CoV-2 was seen to cause productive infection and lead to pulmonary pathological changes in hACE2 mice. Overall, this animal model described here provides a useful tool for studying SARS-CoV-2 transmission and pathogenesis and evaluating COVID-19 vaccines and therapeutics.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections , Disease Models, Animal , Mice, Inbred C57BL , Pandemics , Pneumonia, Viral , Aging , Angiotensin-Converting Enzyme 2 , Animals , Brain/virology , COVID-19 , CRISPR-Cas Systems , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokines/blood , Gene Knock-In Techniques , Lung/pathology , Lung/virology , Lung Diseases, Interstitial/pathology , Nose/virology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , RNA, Viral/analysis , SARS-CoV-2 , Stomach/virology , Trachea/virology , Viral Load , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL