Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
1.
Environ Pollut ; 331(Pt 2): 121886, 2023 Aug 15.
Article in English | MEDLINE | ID: covidwho-2327767

ABSTRACT

In December 2019, the New Crown Pneumonia (the COVID-19) outbroke around the globe, and China imposed a nationwide lockdown starting as early as January 23, 2020. This decision has significantly impacted China's air quality, especially the sharp decrease in PM2.5 (aerodynamic equivalent diameter of particulate matter less than or equal to 2.5 µm) pollution. Hunan Province is located in the central and eastern part of China, with a "horseshoe basin" topography. The reduction rate of PM2.5 concentrations in Hunan province during the COVID-19 (24.8%) was significantly higher than the national average (20.3%). Through the analysis of the changing character and pollution sources of haze pollution events in Hunan Province, more scientific countermeasures can be provided for the government. We use the Weather Research and Forecasting with Chemistry (WRF-Chem, V4.0) model to predict and simulate the PM2.5 concentrations under seven scenarios before the lockdown (2020.1.1-2020.1.22) and during the lockdown (2020.1.23-2020.2.14). Then, the PM2.5 concentrations under different conditions is compared to differentiate the contribution of meteorological conditions and local human activities to PM2.5 pollution. The results indicate the most important cause of PM2.5 pollution reduction is anthropogenic emissions from the residential sector, followed by the industrial sector, while the influence of meteorological factors contribute only 0.5% to PM2.5. The explanation is that emission reductions from the residential sector contribute the most to the reduction of seven primary contaminants. Finally, we trace the source and transport path of the air mass in Hunan Province through the Concentration Weight Trajectory Analysis (CWT). We found that the external input of PM2.5 in Hunan Province is mainly from the air mass transported from the northeast, accounting for 28.6%-30.0%. To improve future air quality, there is an urgent need to burn clean energy, improve the industrial structure, rationalize energy use, and strengthen cross-regional air pollution synergy control.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Air Pollutants/analysis , Communicable Disease Control , Air Pollution/analysis , Particulate Matter/analysis , China/epidemiology
2.
Infect Control Hosp Epidemiol ; : 1-6, 2022 Jul 11.
Article in English | MEDLINE | ID: covidwho-2327113

ABSTRACT

BACKGROUND: Air dispersal of respiratory viruses other than SARS-CoV-2 has not been systematically reported. The incidence and factors associated with air dispersal of respiratory viruses are largely unknown. METHODS: We performed air sampling by collecting 72,000 L of air over 6 hours for pediatric and adolescent patients infected with parainfluenza virus 3 (PIF3), respiratory syncytial virus (RSV), rhinovirus, and adenovirus. The patients were singly or 2-patient cohort isolated in airborne infection isolation rooms (AIIRs) from December 3, 2021, to January 26, 2022. The viral load in nasopharyngeal aspirates (NPA) and air samples were measured. Factors associated with air dispersal were investigated and analyzed. RESULTS: Of 20 singly isolated patients with median age of 30 months (range, 3 months-15 years), 7 (35%) had air dispersal of the viruses compatible with their NPA results. These included 4 (40%) of 10 PIF3-infected patients, 2 (66%) of 3 RSV-infected patients, and 1 (50%) of 2 adenovirus-infected patients. The mean viral load in their room air sample was 1.58×103 copies/mL. Compared with 13 patients (65%) without air dispersal, these 7 patients had a significantly higher mean viral load in their NPA specimens (6.15×107 copies/mL vs 1.61×105 copies/mL; P < .001). Another 14 patients were placed in cohorts as 7 pairs infected with the same virus (PIF3, 2 pairs; RSV, 3 pairs; rhinovirus, 1 pair; and adenovirus, 1 pair) in double-bed AIIRs, all of which had air dispersal. The mean room air viral load in 2-patient cohorts was significantly higher than in rooms of singly isolated patients (1.02×104 copies/mL vs 1.58×103 copies/mL; P = .020). CONCLUSION: Air dispersal of common respiratory viruses may have infection prevention and public health implications.

3.
BMC Nurs ; 22(1): 172, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2327343

ABSTRACT

BACKGROUND: Nurses' organizational citizenship behavior, a spontaneous "altruistic work behavior", may be affected by psychological capital and organizational commitment, but its mechanism is not clear. The aim of this study was to investigate the characteristics and distribution of psychological capital, organizational commitment and organizational citizenship behavior among nurses during the COVID-19 epidemic, and explore the mediating role of organizational commitment in psychological capital and organizational citizenship behavior. METHODS: A cross-sectional survey was conducted among 746 nurses from 6 designated hospitals for COVID-19 treatment in China. Descriptive statistics, Pearson correlation analysis, and structural equation model were used in this study. RESULTS: Nurses' psychological capital, organizational commitment and organizational citizenship behavior scores were 103.12 ± 15.57, 46.53 ± 7.14 and 101.47 ± 12.14, respectively. Additionally, organizational commitment partially mediates between psychological capital and organizational citizenship behavior. CONCLUSIONS: During the COVID-19 pandemic, nurses' psychological capital, organizational commitment, and organizational citizenship behavior were found to be at an upper-middle level, influenced by various social-demographic factors. Furthermore, the results illustrated that psychological capital can affect organizational citizenship behavior through the mediating role of organizational commitment. Therefore, the findings emphasize the importance of nursing administration to monitor and prioritize the mental health and organizational behavior of nurses during the ongoing COVID-19 crisis. It is crucial to focus on developing and nurturing nurses' psychological capital, strengthening their organizational commitment, and ultimately promoting their organizational citizenship behavior.

4.
Front Cell Infect Microbiol ; 13: 1178590, 2023.
Article in English | MEDLINE | ID: covidwho-2324451

ABSTRACT

Objective: Ursodeoxycholic acid (UDCA) may reduce susceptibility to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection by downregulating angiotensin-converting enzyme 2 (ACE2), based on recent experimental investigation. This study aimed to determine the potential protective effect of UDCA against SARS-CoV-2 infection in patients with chronic liver disease. Methods: Patients with chronic liver disease receiving UDCA (taking UDCA ≥1 month) at Beijing Ditan Hospital between January 2022 and December 2022 were consecutively enrolled. These patients were matched in a 1:1 ratio to those with liver disease not receiving UDCA during the same period by using a propensity score matching analysis with nearest neighbor matching algorithm. We conducted a phone survey of coronavirus disease 2019 (COVID-19) infection during the early phase of the pandemic liberation (from 15 December 2022 to 15 January 2023). The risk of COVID-19 was compared in two matched cohorts of 225 UDCA users and 225 non-UDCA users based on patient self-report. Results: In the adjusted analysis, the control group was superior to the UDCA group in COVID-19 vaccination rates and liver function indicators, including γ-glutamyl transpeptidase and alkaline phosphatase (p < 0.05). UDCA was associated with a lower incidence of SARS-CoV-2 infection (UDCA 85.3% vs. control 94.2%, p = 0.002), more mild cases (80.0% vs. 72.0%, p = 0.047), and shorter median time from infection to recovery (5 vs. 7 days, p < 0.001). Logistic regression analysis showed that UDCA was a significant protective factor against COVID-19 infection (OR: 0.32, 95%CI: 0.16-0.64, p = 0.001). Furthermore, diabetes mellitus (OR: 2.48, 95%CI: 1.11-5.54, p = 0.027) and moderate/severe infection (OR: 8.94, 95%CI: 1.07-74.61, p = 0.043) were more likely to prolong the time from infection to recovery. Conclusion: UDCA therapy may be beneficial in reducing COVID-19 infection risk, alleviating symptoms, and shortening the recovery time in patients with chronic liver disease. However, it should be emphasized that the conclusions were based on patient self-report rather than classical COVID-19 detection by experimental investigations. Further large clinical and experimental studies are needed to validate these findings.


Subject(s)
COVID-19 , Liver Diseases , Humans , Ursodeoxycholic Acid/therapeutic use , COVID-19 Vaccines , Cholagogues and Choleretics/therapeutic use , SARS-CoV-2 , Liver Diseases/drug therapy
5.
Biol Methods Protoc ; 7(1): bpac029, 2022.
Article in English | MEDLINE | ID: covidwho-2316518

ABSTRACT

Background: It's critical to identify COVID-19 patients with a higher death risk at early stage to give them better hospitalization or intensive care. However, thus far, none of the machine learning models has been shown to be successful in an independent cohort. We aim to develop a machine learning model which could accurately predict death risk of COVID-19 patients at an early stage in other independent cohorts. Methods: We used a cohort containing 4711 patients whose clinical features associated with patient physiological conditions or lab test data associated with inflammation, hepatorenal function, cardiovascular function, and so on to identify key features. To do so, we first developed a novel data preprocessing approach to clean up clinical features and then developed an ensemble machine learning method to identify key features. Results: Finally, we identified 14 key clinical features whose combination reached a good predictive performance of area under the receiver operating characteristic curve 0.907. Most importantly, we successfully validated these key features in a large independent cohort containing 15 790 patients. Conclusions: Our study shows that 14 key features are robust and useful in predicting the risk of death in patients confirmed SARS-CoV-2 infection at an early stage, and potentially useful in clinical settings to help in making clinical decisions.

6.
Infect Prev Pract ; 5(2): 100286, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2320482

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) has influenced antimicrobial consumption and incidence of multidrug-resistant organisms (MDROs). We aimed to study the epidemiology of MDROs before and during the COVID-19 pandemic in Hong Kong. Methods: With the maintenance of infection control measures, we described the trend of MDRO infections, including methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Acinetobacter species (CRA), and extended-spectrum-beta-lactamase-(ESBL)-producing Enterobacterales, in a healthcare region with 3100-bed before (1 January 2016 to 31 December 2019, period 1) and during COVID-19 (1 January 2020 to 30 September 2022, period 2), together with the antimicrobial consumption using piecewise Poisson regression. The epidemiological characteristics of newly diagnosed COVID-19 patients with or without MDRO infections were analyzed. Results: Between period 1 and 2, we observed a significant increase in the trend of CRA infections (P<0.001), while there was no significant increase in the trend of MRSA (P=0.742) and ESBL-producing Enterobacterales (P=0.061) infections. Meanwhile, a significant increase in the trend of carbapenems (P<0.001), extended-spectrum beta-lactam-beta-lactamase inhibitor combinations (BLBI) (P=0.045), and fluoroquinolones (P=0.009) consumption was observed. The observed opportunity (23,540 ± 3703 vs 26,145 ± 2838, p=0.359) and compliance (81.6% ± 0.5% vs 80.1% ± 0.8%, P=0.209) of hand hygiene per year was maintained. In a multivariable model, older age, male sex, referral from residential care home for the elderly, presence of indwelling device, presence of endotracheal tube, and use of carbapenems, use of BLBI, use of proton pump inhibitors and history of hospitalization in the past 3 months were associated with higher risks of infections by MDROs among COVID-19 patients. Conclusion: Infection control measures may control the surge of MDROs despite an increasing trend of antimicrobial consumption.

7.
Cell ; 186(10): 2144-2159.e22, 2023 05 11.
Article in English | MEDLINE | ID: covidwho-2312256

ABSTRACT

Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.


Subject(s)
Apoptosis Regulatory Proteins , Chiroptera , Inflammasomes , Ribonucleoproteins , Virus Diseases , Animals , Humans , Mice , Apoptosis Regulatory Proteins/metabolism , Chiroptera/immunology , COVID-19 , Inflammasomes/immunology , Ribonucleoproteins/metabolism , SARS-CoV-2 , Virus Diseases/immunology , Virus Physiological Phenomena
8.
Ren Fail ; 45(1): 2199097, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2306598

ABSTRACT

OBJECTIVES: The objective of this study was to develop clinical scores to predict the risk of intensive care unit (ICU) admission in patients with COVID-19 and end stage kidney disease (ESKD). METHODS: This was a prospective study in which 100 patients with ESKD were enrolled and divided into two groups: the ICU group and the non-ICU group. We utilized univariate logistic regression and nonparametric statistics to analyze the clinical characteristics and liver function changes of both groups. By plotting receiver operating characteristic curves, we identified clinical scores that could predict the risk of ICU admission. RESULTS: Out of the 100 patients with Omicron infection, 12 patients were transferred to the ICU due to disease aggravation, with an average of 9.08 days from hospitalization to ICU transfer. Patients transferred to the ICU more commonly experienced shortness of breath, orthopnea, and gastrointestinal bleeding. The peak liver function and changes from baseline in the ICU group were significantly higher, with p values <.05. We found that the baseline platelet-albumin-bilirubin score (PALBI) and neutrophil-to-lymphocyte ratio (NLR) were good predictors of ICU admission risk, with area under curve values of 0.713 and 0.770, respectively. These scores were comparable to the classic Acute Physiology and Chronic Health Evaluation II (APACHE-II) score (p > .05). CONCLUSION: Patients with ESKD and Omicron infection who are transferred to the ICU are more likely to have abnormal liver function. The baseline PALBI and NLR scores can better predict the risk of clinical deterioration and early transfer to the ICU for treatment.


Subject(s)
COVID-19 , Kidney Failure, Chronic , Humans , Prospective Studies , Neutrophils , COVID-19/complications , SARS-CoV-2 , Hospitalization , Lymphocytes , Intensive Care Units , Kidney Failure, Chronic/therapy , Albumins , ROC Curve , Prognosis , Retrospective Studies
9.
Ann Hematol ; 102(6): 1589-1598, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2293303

ABSTRACT

COVID-19 is characterized by a predominantly prothrombotic state, which underlies severe disease and poor outcomes. Imbalances of the gut microbiome have been linked with abnormal hemostatic processes. Understanding the relationship between the gut microbiome and abnormal coagulation parameters in COVID-19 could provide a novel framework for the diagnosis and management of COVID-related coagulopathies (CRC). This cross-sectional study used shotgun metagenomic sequencing to examine the gut microbiota of patients with CRC (n = 66) and compared it to COVID control (CCs) (n = 27) and non-COVID control (NCs) (n = 22) groups. Three, 1, and 3 taxa were found enriched in CRCs, CCs, and NCs. Next, random forest models using 7 microbial biomarkers and differential clinical characteristics were constructed and achieved strong diagnostic potential in distinguishing CRC. Specifically, the most promising biomarker species for CRC were Streptococcus thermophilus, Enterococcus faecium, and Citrobacter portucalensis. Conversely, Enterobacteriaceae family and Fusicatenibacter genus are potentially protective against CRC in COVID patients. We further identified 4 species contributing to 20 MetaCyc pathways that were differentially abundant among groups, with S. thermophilus as the main coding species in CRCs. Our findings suggest that the alterations of gut microbiota compositional and functional profiles may influence the pathogenesis of CRC and that microbiota-based diagnosis and treatment could potentially benefit COVID patients in preventing and alleviating thrombosis-related clinical outcomes.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Gastrointestinal Microbiome , Microbiota , Humans , Cross-Sectional Studies , COVID-19/complications , Blood Coagulation Disorders/etiology
10.
Environ Pollut ; 319: 120928, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2293297

ABSTRACT

Toughest-ever clean air actions in China have been implemented nationwide to improve air quality. However, it was unexpected that from 2014 to 2018, the observed wintertime PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 µm) concentrations showed an insignificant decrease in Henan Province (HNP), a region in the west of the North China Plain. Emission controls seem to have failed to improve winter air quality in HNP, which has caused great confusion in formulating the next air improvement strategy. We employed a deweathering technique to decouple the impact of meteorological conditions. The results showed that the deweathered PM2.5 trend was -3.3%/yr in winter from 2014 to 2018, which had a larger decrease than the observed concentrations (-0.9%/yr), demonstrating that emission reduction was effective at improving air quality. However, compared with the other two megacity clusters, Beijing-Tianjin-Hebei (BTH) (-8.4%/yr) and Yangtze River Delta (YRD) (-7.4%/yr), the deweathered decreasing trend of PM2.5 for HNP remained slow. The underlying mechanism driving the changes in PM2.5 and its chemical components was further explored, using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Model simulations indicated that nitrate dominated the increase of PM2.5 components in HNP and the proportions of nitrate to total PM2.5 increased from 22.4% in January 2015 to 39.7% in January 2019. There are two primary reasons for this phenomenon. One is the limited control of nitrogen oxide emissions, which facilitates the conversion of nitric acid to particulate nitrate by ammonia. The other is unfavourable meteorological conditions, particularly increasing humidity, further enhancing nitrate formation through multiphase reactions. This study highly emphasizes the importance of reducing nitrogen oxide emissions owing to their impact on the formation of particulate nitrate in China, especially in the HNP region.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Nitrates , Environmental Monitoring , Air Pollution/analysis , Particulate Matter/analysis , Beijing , China , Dust , Seasons , Coal
11.
Antimicrobial Stewardship and Healthcare Epidemiology ; 3(S1):s20, 2023.
Article in English | ProQuest Central | ID: covidwho-2264780

ABSTRACT

Objectives: Following a cluster of COVID-19 cases in a Singapore public hospital in April 2021, the local health authority mandated the use of N95 respirators in all inpatient wards. This increased the demand for N95 mask fit-testing to ensure that healthcare workers were donning respirators that fit their facial characteristics and hence provided protection through a good facial seal. The demand for fit-testing during the pandemic highlighted the scarcity of manpower and ergonomics concern, such as carpel tunnel syndrome experienced in long hours of qualitative fit-testing sessions. We evaluated the operational efficiency, cost-effectiveness, and difference in passing rate after the introduction of the quantitative method. Methods: Conventional qualitative fit-testing was conducted using manual pumping of a challenge agent, enabling the user to determine the fit of the respirator. The quantitative fit-testing protocol used a condensation particle counter (CPC) to measure the concentration of particles inside the mask and the atmosphere to determine the fit of respirator. The Occupational Safety and Health Administration (OSHA)–approved minimum fit factor of 100 was used as the criterion for a successful N95 respirator fit. Tubes used during quantitative fit-testing were reprocessed using thermal disinfection. Results: Quantitative mask fit-testing provided an objective numerical measure to assess adequate fit of N95 respirator, which provided users with confidence in the respirator fit. It addressed a manpower limitation issue because it did not require qualified trainers to conduct the test, and automation also prevented any potential occupational hazard from repeated actions required in qualitative fit-testing. An increase in the passing rate for N95 fit-testing from 94.5% to 95.5% was observed. However, the high cost of equipment, annual recalibration, and consumables must be considered. Conclusions: Quantitative N95 fit-testing, when adopted with careful consideration of its cost, is an approach to consider for hospital-wide fit-testing.

12.
Chemical Engineering Journal ; 433(Part 3), 2022.
Article in English | CAB Abstracts | ID: covidwho-2288067

ABSTRACT

The chloroxylenol (PCMX) has shown well virucidal efficacy against COVID-19, but the large-scale utilization of which will undoubtedly pose extra environmental threaten. In the present study, the recycled industrial phenylenediamine residue was used and an integrated strategy of "carbonization-casting-activation" using super low-dose of activator and templates was established to achieve in-situ N/O co-doping and facile synthesis of a kind of hierarchical hyperporous carbons (HHPC). The sample of HHPC-1.25-0.5 obtained with activator and template to residue of 1.25 and 0.5 respectively shows super-high specific surface area of 3602 m2/g and volume of 2.81 cm3/g and demonstrates remarkable adsorption capacity of 1475 mg/g for PCMX in batch and of 1148 mg/g in dynamic column adsorption test. In addition, the HHPC-1.25-0.5 exhibits excellent reusability and tolerance for PCMX adsorption under various ionic backgrounds and real water matrix conditions. The combined physio-chemistry characterization, kinetic study and DFT calculation reveal that the enhanced high performances originate from the hierarchical pore structure and strong electrostatic interaction between PCMX and surface rich pyridinic-N and carbonyl groups.

13.
Sustainability ; 15(5):4064, 2023.
Article in English | ProQuest Central | ID: covidwho-2258956

ABSTRACT

With the rapid growth of automobile numbers and the increased traffic congestion, traffic has increasingly significant effects on regional air quality and regional sustainable development in China. This study tried to quantify the effect of transportation operation on regional air quality based on MODIS AOD. This paper analyzed the space-time characteristics of air quality and traffic during the epidemic by series analysis and kernel density analysis, and quantified the relationship between air quality and traffic through a Geographically Weighted Regression (GWR) model. The main research conclusions are as follows: The epidemic has a great impact on traffic and regional air quality. PM2.5 and NO2 had the same trend with traffic congestion delay index (CDI), but they were not as obvious as CDI. Both cities with traffic congestion and cities with the worst air quality showed strong spatial dependence. The concentration areas of high AOD value in the east areas of the Hu line were consistent with the two gathering centers formed by cities with traffic congestion in space, and also consistent with the gathering center of cities with poor air quality. The concentration area of AOD decline was consistent with the gathering center formed by cities with the worst air quality. AOD had a strong positive correlation with road network density, and its GWR correlation coefficient was 0.68, then These provinces suitable for GWR or not suitable were divided. This study has a great significance for the transportation planning, regional planning, air quality control strategies and regional sustainable development, etc.

14.
Lancet Reg Health West Pac ; 10: 100130, 2021 May.
Article in English | MEDLINE | ID: covidwho-2254259

ABSTRACT

BACKGROUND: Viral genomic surveillance is vital for understanding the transmission of COVID-19. In Hong Kong, breakthrough outbreaks have occurred in July (third wave) and November (fourth wave) 2020. We used whole viral genome analysis to study the characteristics of these waves. METHODS: We analyzed 509 SARS-CoV-2 genomes collected from Hong Kong patients between 22nd January and 29th November, 2020. Phylogenetic and phylodynamic analyses were performed, and were interpreted with epidemiological information. FINDINGS: During the third and fourth waves, diverse SARS-CoV-2 genomes were identified among imported infections. Conversely, local infections were dominated by a single lineage during each wave, with 96.6% (259/268) in the third wave and 100% (73/73) in the fourth wave belonging to B.1.1.63 and B.1.36.27 lineages, respectively. While B.1.1.63 lineage was imported 2 weeks before the beginning of the third wave, B.1.36.27 lineage has circulated in Hong Kong for 2 months prior to the fourth wave. During the fourth wave, 50.7% (37/73) of local infections in November was identical to the viral genome from an imported case in September. Within B.1.1.63 or B.1.36.27 lineage in our cohort, the most common non-synonymous mutations occurred at the helicase (nsp13) gene. INTERPRETATION: Although stringent measures have prevented most imported cases from spreading in Hong Kong, a single lineage with low-level local transmission in October and early November was responsible for the fourth wave. A superspreading event or lower temperature in November may have facilitated the spread of the B.1.36.27 lineage.

15.
J Cancer ; 14(5): 707-716, 2023.
Article in English | MEDLINE | ID: covidwho-2282948

ABSTRACT

The current cancer detection methods are heavily dependent on the component analysis of corresponding cancer antigens. There is a lack of effective and simple clinical methods of ovarian cancer screening, which hinders the early identification for ovarian cancer and its treatment. To develop a simple and rapid method for quantitative analysis of ovarian cancer, we developed a DNA strand displacement-based method and finished the rapid detection of miR-21 in ovarian cancer cells within 5 min by a one-step isothermal reaction. The fluorescence intensity trajectory had a good linear relationship with miR-21 concentrations in the range of 100 fM-100 nM, with a lower limit of 6.05 pM. This detection method is simple, faster, and accurate. Besides, it can be applied to detect the miRNA biomarkers of other cancers by changing the preset sequences of toehold.

16.
Lancet Reg Health West Pac ; 32: 100660, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2288961

ABSTRACT

Background: The ongoing outbreak of SARS-CoV-2 Omicron BA.2 infections in Hong Kong, the model city of universal masking of the world, has resulted in a major public health crisis. Although the third vaccination resulted in strong boosting of neutralization antibody, vaccine efficacy and correlate of immune protection against the major circulating Omicron BA.2 remain to be investigated. Methods: We investigated the vaccine efficacy against the Omicron BA.2 breakthrough infection among 470 public servants who had received different SARS-CoV-2 vaccine regimens including two-dose BNT162b2 (2 × BNT, n = 169), three-dose BNT162b2 (3 × BNT, n = 168), two-dose CoronaVac (2 × CorV, n = 34), three-dose CoronaVac (3 × CorV, n = 67) and third-dose BNT162b2 following 2 × CorV (2 × CorV+1BNT, n = 32). Humoral and cellular immune responses after three-dose vaccination were further characterized and correlated with clinical characteristics of BA.2 infection. Findings: During the BA.2 outbreak, 27.7% vaccinees were infected. The timely third-dose vaccination provided significant protection with lower incidence rates of breakthrough infections (2 × BNT 46.2% vs 3 × BNT 13.1%, p < 0.0001; 2 × CorV 44.1% vs 3 × CorV 19.4%, p = 0.003). Investigation of immune responses on blood samples derived from 90 subjects in three-dose vaccination cohorts collected before the BA.2 outbreak revealed that the third-dose vaccination activated spike (S)-specific memory B cells and Omicron cross-reactive T cell responses, which correlated with reduced frequencies of breakthrough infections and disease severity rather than with types of vaccines. Moreover, the frequency of S-specific activated memory B cells was significantly lower in infected vaccinees than uninfected vaccinees before vaccine-breakthrough infection whereas IFN-γ+ CD4 T cells were negatively associated with age and viral clearance time. Critically, BA.2 breakthrough infection boosted cross-reactive memory B cells with enhanced cross-neutralizing antibodies to Omicron sublineages, including BA.2.12.1 and BA.4/5, in all vaccinees tested. Interpretation: Our results imply that the timely third vaccination and immune responses are likely required for vaccine-mediated protection against Omicron BA.2 pandemic. Although BA.2 conferred the highest neutralization resistance compared with variants of concern tested before the emergence of BA.2.12.1 and BA.4/5, the third dose vaccination-activated S-specific memory B cells and Omicron cross-reactive T cell responses contributed to reduced frequencies of breakthrough infection and disease severity. Neutralizing antibody potency enhanced by BA.2 breakthrough infection in vaccinees with prior 3 doses of CoronaVac or BNT162b2 may reduce the risk of infection against ongoing BA.2.12.1 and BA.4/5. Funding: Hong Kong Research Grants Council Collaborative Research Fund, Health and Medical Research Fund, Wellcome Trust, Shenzhen Science and Technology Program, the Health@InnoHK, Innovation and Technology Commission of Hong Kong, China, National Program on Key Research Project, Emergency Key Program of Guangzhou Laboratory, donations from the Friends of Hope Education Fund and the Hong Kong Theme-Based Research Scheme.

18.
China CDC Wkly ; 5(8): 180-183, 2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2288605

ABSTRACT

Introduction: In November 2021, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant was identified as the variant of concern and has since spread globally, replacing other cocirculating variants. To better understand the dynamic changes in viral load over time and the natural history of the virus infection, we analyzed the expression of the open reading frames 1ab (ORF1ab) and nucleocapsid (N) genes in patients infected with Omicron. Methods: We included patients initially admitted to the hospital for SARS-CoV-2 infection between November 5 and December 25, 2022. We collected daily oropharyngeal swabs for quantitative reverse transcriptase-polymerase chain reaction tests using commercial kits. We depicted the cycle threshold (Ct) values for amplification of ORF1ab and N genes from individual patients in age-specific groups in a time series. Results: A total of 480 inpatients were included in the study, with a median age of 59 years (interquartile range, 42 to 78; range, 16 to 106). In the <45-year-old age group, the Ct values for ORF1ab and N gene amplification remained below 35 for 9.0 and 11.5 days, respectively. In the ≥80-year-old age group, the Ct values for ORF1ab and N genes stayed below 35 for 11.5 and 15.0 days, respectively, which was the longest among all age groups. The Ct values for N gene amplification took longer to rise above 35 than those for ORF1ab gene amplification. Conclusion: The time to test negative varied among different age groups, with viral nucleic acid shedding taking longer in older age groups compared to younger age groups. As a result, the time to resolution of Omicron infection increased with increasing age.

19.
Epidemiol Infect ; 151: e34, 2023 02 17.
Article in English | MEDLINE | ID: covidwho-2263361

ABSTRACT

The purpose of this study was to analyse the clinical characteristics of patients with severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) PCR re-positivity after recovering from coronavirus disease 2019 (COVID-19). Patients (n = 1391) from Guangzhou, China, who had recovered from COVID-19 were recruited between 7 September 2021 and 11 March 2022. Data on epidemiology, symptoms, laboratory test results and treatment were analysed. In this study, 42.7% of recovered patients had re-positive result. Most re-positive patients were asymptomatic, did not have severe comorbidities, and were not contagious. The re-positivity rate was 39%, 46%, 11% and 25% in patients who had received inactivated, mRNA, adenovirus vector and recombinant subunit vaccines, respectively. Seven independent risk factors for testing re-positive were identified, and a predictive model was constructed using these variables. The predictors of re-positivity were COVID-19 vaccination status, previous SARs-CoV-12 infection prior to the most recent episode, renal function, SARS-CoV-2 IgG and IgM antibody levels and white blood cell count. The predictive model could benefit the control of the spread of COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19 Testing , Polymerase Chain Reaction
20.
Zhongguo Fei Ai Za Zhi ; 26(2): 148-150, 2023 Feb 20.
Article in Chinese | MEDLINE | ID: covidwho-2268854

ABSTRACT

In recent years, the corona virus disease 2019 (COVID-19) pandemic has had a huge impact on the global medical, political and economic fields. Since the beginning of the COVID-19 epidemic, our understanding of the impact of COVID-19 has grown exponentially. Recently, the COVID-19 epidemic has changed rapidly in China, and there has been controversy over how to carry out surgical operations for patients with lung neoplastic lesions. Some studies have shown that lung cancer patients undergoing surgery are more likely to experience respiratory failure and perioperative death after contracting COVID-19 than the general population, however, delays in cancer treatment are also associated with increased mortality among these patients. In particular, the novel coronavirus Omikron variant has a higher transmissibility and may escape the immunity obtained through the previous novel coronavirus infection and vaccination. In order to minimize the risk of novel coronavirus infection in surgical patients, it is necessary to develop new treatment guidelines, expert consensus and preventive measures. However, the current rapid change of the epidemic situation has led to insufficient time and evidence to develop guidelines and consensus. Therefore, thoracic surgeons need to evaluate specific patient populations at higher risk of severe complications before surgery and weigh the benefit of surgical treatment against the risk of novel coronavirus infection. We try to give some recommendations on lung surgery during the current domestic epidemic situation based on the guidelines and consensus of oncology and thoracic surgery organizations in different regions on lung surgery.
.


Subject(s)
COVID-19 , Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Lung Neoplasms/complications , SARS-CoV-2 , Pandemics/prevention & control , Lung
SELECTION OF CITATIONS
SEARCH DETAIL