Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Front Psychiatry ; 12: 694051, 2021.
Article in English | MEDLINE | ID: covidwho-1369728


Objective: The 2019 novel coronavirus disease (COVID-19) broke out in Hubei Province and spread rapidly to the whole country, causing huge public health problems. College students are a special group, and there is no survey on insomnia among college students. The purpose of this study was to investigate the incidence and related factors of insomnia in college students during the period of COVID-19. Method: A total of 1,086 college students conducted a cross-sectional study through the questionnaire star platform. The survey time was from February 15 to February 22, 2020. The collected information included demographic informatics and mental health scale, Athens Insomnia Scale (AIS) to assess sleep quality, Self-Reporting Questionnaire-20 (SRQ-20) to assess general psychological symptoms, Chinese perceived stress scale (CPSS) to assess stress. We used logistic regression to analyze the correlation between related factors and insomnia symptoms. Results: The prevalence of insomnia, general psychological symptoms and stress were 16.67, 5.8, and 40.70%, respectively. Multivariate logistic regression analysis showed that gender (OR = 1.55, p = 0.044, 95% CI = 1.00-2.41), general psychological symptoms (OR = 1.49, p < 0.01, 95% CI = 1.40-1.60) and living in an isolation unit (OR = 2.21, p = 0.014, 95% CI = 1.17-4.16) were risk factors for insomnia of college students. Conclusion: Our results show that the insomnia is very common among college students during the outbreak of covid-19, and the related factors include gender, general psychological symptoms and isolation environment. It is necessary to intervene the insomnia of college students and warrants attention for mental well-being of college students.

Engineering (Beijing) ; 2021 Jun 26.
Article in English | MEDLINE | ID: covidwho-1284079


Many microorganisms have mechanisms that protect cells against attack from viruses. The fermentation components of Streptomyces sp. 1647 exhibit potent anti-influenza A virus (IAV) activity. This strain was isolated from soil in southern China in the 1970s, but the chemical nature of its antiviral substance(s) has remained unknown until now. We used an integrated multi-omics strategy to identify the antiviral agents from this streptomycete. The antibiotics and Secondary Metabolite Analysis Shell (antiSMASH) analysis of its genome sequence revealed 38 biosynthetic gene clusters (BGCs) for secondary metabolites, and the target BGCs possibly responsible for the production of antiviral components were narrowed down to three BGCs by bioactivity-guided comparative transcriptomics analysis. Through bioinformatics analysis and genetic manipulation of the regulators and a biosynthetic gene, cluster 36 was identified as the BGC responsible for the biosynthesis of the antiviral compounds. Bioactivity-based molecular networking analysis of mass spectrometric data from different recombinant strains illustrated that the antiviral compounds were a class of structural analogues. Finally, 18 pseudo-tetrapeptides with an internal ureido linkage, omicsynins A1-A6, B1-B6, and C1-C6, were identified and/or isolated from fermentation broth. Among them, 11 compounds (omicsynins A1, A2, A6, B1-B3, B5, B6, C1, C2, and C6) are new compounds. Omicsynins B1-B4 exhibited potent antiviral activity against IAV with the 50% inhibitory concentration (IC50) of approximately 1 µmol∙L-1 and a selectivity index (SI) ranging from 100 to 300. Omicsynins B1-B4 also showed significant antiviral activity against human coronavirus HCoV-229E. By integrating multi-omics data, we discovered a number of novel antiviral pseudo-tetrapeptides produced by Streptomyces sp. 1647, indicating that the secondary metabolites of microorganisms are a valuable source of novel antivirals.