Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-312644

ABSTRACT

Background: High-flow nasal cannula (HFNC) oxygen therapy provides effective respiratory support in patients with hypoxemic respiratory failure. However, the efficacy of HFNC for patients with COVID-19 has not been established. This study was performed to assess the efficacy of HFNC for patients with COVID-19 and describe early predictors of HFNC treatment success in order to develop a prediction tool that accurately identifies the need for invasive mechanical ventilation (IMV). Methods: : We retrospectively reviewed the records of patients with COVID-19 who underwent HFNC in 2 hospitals in Wuhan between 1 January and 1 March 2020. Overall survival, the success rate of HFNC treatment and respiratory variables to predict the outcome of HFNC treatment were evaluated. Results: : A total of 105 patients were analyzed. Of these, 65 patients (61.9%) showed improved oxygenation and were successfully withdrawn from HFNC. The oxygenation index (PaO 2 /FiO 2 ), Oxygen saturation index (SpO 2 /FiO 2 ) and respiratory rate-oxygenation index (ROX index: SpO 2 /FiO 2 *RR) at 6h, 12h and 24h of HFNC initiation were closely related to the prognosis. The best predictor was the ROX index at 24h after initiating HFNC (area under the receiver operating characteristic curve, 0.874). In the multivariate logistic regression analysis, young age, gender of female, and lower SOFA score all have predictive value, while a ROX index greater than 6.10 at 24 h after initiation was significantly associated with HFNC success (OR, 104.212;95% CI, 11.399-952.757;p <0.001). Conclusions: : Our study indicated that HFNC was an effective way of respiratory support in the treatment of severe COVID-19. The ROX index greater than 6.10 at 24 h after initiating HFNC was a good predictor of successful HFNC treatment.

2.
Front Immunol ; 12: 738532, 2021.
Article in English | MEDLINE | ID: covidwho-1686470

ABSTRACT

Background: The benefits of intravenous immunoglobulin administration are controversial for critically ill COVID-19 patients. Methods: We analyzed retrospectively the effects of immunoglobulin administration for critically ill COVID-19 patients. The primary outcome was 28-day mortality. Inverse probability of treatment weighting (IPTW) with propensity score was used to account for baseline confounders. Cluster analysis was used to perform phenotype analysis. Results: Between January 1 and February 29, 2020, 754 patients with complete data from 19 hospitals were enrolled. Death at 28 days occurred for 408 (54.1%) patients. There were 392 (52.0%) patients who received intravenous immunoglobulin, at 11 (interquartile range (IQR) 8, 16) days after illness onset; 30% of these patients received intravenous immunoglobulin prior to intensive care unit (ICU) admission. By unadjusted analysis, no difference was observed for 28-day mortality between the immunoglobulin and non-immunoglobulin groups. Similar results were found by propensity score matching (n = 506) and by IPTW analysis (n = 731). Also, IPTW analysis did not reveal any significant difference between hyperinflammation and hypoinflammation phenotypes. Conclusion: No significant association was observed for use of intravenous immunoglobulin and decreased mortality of severe COVID-19 patients. Phenotype analysis did not show any survival benefit for patients who received immunoglobulin therapy.


Subject(s)
COVID-19/mortality , COVID-19/therapy , Immunoglobulins, Intravenous/therapeutic use , Aged , China , Critical Care/methods , Critical Illness/therapy , Female , Humans , Immunization, Passive/methods , Immunization, Passive/mortality , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Treatment Outcome
3.
Front Med (Lausanne) ; 8: 659793, 2021.
Article in English | MEDLINE | ID: covidwho-1497084

ABSTRACT

Background: Extracorporeal membrane oxygenation (ECMO) might benefit critically ill COVID-19 patients. But the considerations besides indications guiding ECMO initiation under extreme pressure during the COVID-19 epidemic was not clear. We aimed to analyze the clinical characteristics and in-hospital mortality of severe critically ill COVID-19 patients supported with ECMO and without ECMO, exploring potential parameters for guiding the initiation during the COVID-19 epidemic. Methods: Observational cohort study of all the critically ill patients indicated for ECMO support from January 1 to May 1, 2020, in all 62 authorized hospitals in Wuhan, China. Results: Among the 168 patients enrolled, 74 patients actually received ECMO support and 94 not were analyzed. The in-hospital mortality of the ECMO supported patients was significantly lower than non-ECMO ones (71.6 vs. 85.1%, P = 0.033), but the role of ECMO was affected by patients' age (Logistic regression OR 0.62, P = 0.24). As for the ECMO patients, the median age was 58 (47-66) years old and 62.2% (46/74) were male. The 28-day, 60-day, and 90-day mortality of these ECMO supported patients were 32.4, 68.9, and 74.3% respectively. Patients survived to discharge were younger (49 vs. 62 years, P = 0.042), demonstrated higher lymphocyte count (886 vs. 638 cells/uL, P = 0.022), and better CO2 removal (PaCO2 immediately after ECMO initiation 39.7 vs. 46.9 mmHg, P = 0.041). Age was an independent risk factor for in-hospital mortality of the ECMO supported patients, and a cutoff age of 51 years enabled prediction of in-hospital mortality with a sensitivity of 84.3% and specificity of 55%. The surviving ECMO supported patients had longer ICU and hospital stays (26 vs. 18 days, P = 0.018; 49 vs. 29 days, P = 0.001 respectively), and ECMO procedure was widely carried out after the supplement of medical resources after February 15 (67.6%, 50/74). Conclusions: ECMO might be a benefit for severe critically ill COVID-19 patients at the early stage of epidemic, although the in-hospital mortality was still high. To initiate ECMO therapy under tremendous pressure, patients' age, lymphocyte count, and adequacy of medical resources should be fully considered.

4.
Front Med (Lausanne) ; 8: 716086, 2021.
Article in English | MEDLINE | ID: covidwho-1450817

ABSTRACT

Background: Extracorporeal membrane oxygenation (ECMO) is a rapidly evolving therapy for acute lung and/or heart failure. However, the information on the application of ECMO in severe coronavirus disease 2019 (COVID-19) is limited, such as the initiation time. Especially in the period and regions of ECMO instrument shortage, not all the listed patients could be treated with ECMO in time. This study aimed to investigate and clarify the timing of ECMO initiation related to the outcomes of severe patients with COVID-19. The results show that ECMO should be initiated within 24 h after the criteria are met. Methods: In this retrospective, multicenter cohort study, we enrolled all ECMO patients with confirmed COVID-19 at the three hospitals between December 29, 2019 and April 5, 2020. Data on the demographics, clinical presentation, laboratory profile, clinical course, treatments, complications, and outcomes were collected. The primary outcomes were successful ECMO weaning rate and 60-day mortality after ECMO. Successful weaning from ECMO means that the condition of patients improved with adequate oxygenation and gas exchange, as shown by the vital signs, blood gases, and chest X-ray, and the patient was weaned from ECMO for at least 48 h. Results: A total of 31 patients were included in the analysis. The 60-day mortality rate after ECMO was 71%, and the ECMO weaning rate was 26%. Patients were divided into a delayed ECMO group [3 (interquartile range (IQR), 2-5) days] and an early ECMO group [0.5 (IQR, 0-1) days] based on the time between meeting the ECMO criteria and ECMO initiation. In this study, 14 and 17 patients were included in the early and delayed treatment groups, respectively. Early initiation of ECMO was associated with decreased 60-day mortality after ECMO (50 vs. 88%, P = 0.044) and an increased ECMO weaning rate (50 vs. 6%, P = 0.011). Conclusions: In ECMO-supported patients with COVID-19, delayed initiation of ECMO is a risk factor associated with a poorer outcome. Trial Registration: Clinical trial submission: March 19, 2020. Registry name: A medical records-based study for the clinical application of extracorporeal membrane oxygenation in the treatment of severe respiratory failure patients with novel coronavirus pneumonia (COVID-19). Chinese Clinical Trial Registry: https://www.chictr.org.cn/showproj.aspx?proj=51267,identifier:~ChiCTR2000030947.

5.
Lancet Digit Health ; 3(3): e166-e174, 2021 03.
Article in English | MEDLINE | ID: covidwho-1149618

ABSTRACT

BACKGROUND: Non-invasive respiratory strategies (NIRS) including high-flow nasal cannula (HFNC) and non-invasive ventilation (NIV) have become widely used in patients with COVID-19 who develop acute respiratory failure. However, use of these therapies, if ineffective, might delay initiation of invasive mechanical ventilation (IMV) in some patients. We aimed to determine early predictors of NIRS failure and develop a simple nomogram and online calculator that can identify patients at risk of NIRS failure. METHODS: We did a retrospective, multicentre observational study in 23 hospitals designated for patients with COVID-19 in China. Adult patients (≥18 years) with severe acute respiratory syndrome coronavirus 2 infection and acute respiratory failure receiving NIRS were enrolled. A training cohort of 652 patients (21 hospitals) was used to identify early predictors of NIRS failure, defined as subsequent need for IMV or death within 28 days after intensive care unit admission. A nomogram was developed by multivariable logistic regression and concordance statistics (C-statistics) computed. C-statistics were validated internally by cross-validation in the training cohort, and externally in a validation cohort of 107 patients (two hospitals). FINDINGS: Patients were enrolled between Jan 1 and Feb 29, 2020. NIV failed in 211 (74%) of 286 patients and HFNC in 204 (56%) of 366 patients in the training cohort. NIV failed in 48 (81%) of 59 patients and HFNC in 26 (54%) of 48 patients in the external validation cohort. Age, number of comorbidities, respiratory rate-oxygenation index (ratio of pulse oximetry oxygen saturation/fraction of inspired oxygen to respiratory rate), Glasgow coma scale score, and use of vasopressors on the first day of NIRS in the training cohort were independent risk factors for NIRS failure. Based on the training dataset, the nomogram had a C-statistic of 0·80 (95% CI 0·74-0·85) for predicting NIV failure, and a C-statistic of 0·85 (0·82-0·89) for predicting HFNC failure. C-statistic values were stable in both internal validation (NIV group mean 0·79 [SD 0·10], HFNC group mean 0·85 [0·07]) and external validation (NIV group value 0·88 [95% CI 0·72-0·96], HFNC group value 0·86 [0·72-0·93]). INTERPRETATION: We have developed a nomogram and online calculator that can be used to identify patients with COVID-19 who are at risk of NIRS failure. These patients might benefit from early triage and more intensive monitoring. FUNDING: Ministry of Science and Technology of the People's Republic of China, Key Research and Development Plan of Jiangsu Province, Chinese Academy of Medical Sciences.


Subject(s)
COVID-19/therapy , Nomograms , Noninvasive Ventilation , Treatment Failure , Adult , Aged , China , Comorbidity , Female , Forecasting , Humans , Male , Medical Records , Middle Aged , Retrospective Studies , SARS-CoV-2 , Young Adult
7.
Int Immunopharmacol ; 90: 107143, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1084141

ABSTRACT

BACKGROUND: Thymosin α1 therapy was commonly used in patients with coronavirus disease 2019 (COVID-19), while its impact on outcomes and which patients could benefit from thymosin α1 therapy were uncertain. STUDY DESIGN AND METHODS: Patients with COVID-19 from 19 designated hospitals between January 1 to February 29, 2020 were included, and the main exposure of interest was administration of thymosin α1. The primary outcome was 28-day mortality. Propensity score matching (PSM) was used to account for baseline confounders, cluster analysis and Cox proportional hazard model was used to account for subgroup analysis. RESULTS: A total of 771 patients were included, and 327/771 (42.4%) patients received thymosin α1 therapy. The 28-day mortality in thymosin group was significantly lower than that in control group (41.3% vs. 60.6%, p < 0.001). After PSM 522 patients were included in analysis and the 28-day mortality in thymosin α1 group and control group were 51.0% and 52.9% respectively, with no significant difference. In subgroup analyses, the association between thymosin α1 therapy and 28-day mortality appeared to be stronger among male patients (HR 0.673, 95% CI 0.454-0.998; p = 0.049). There were no benefits of thymosin α1 in 28-day mortality in other subgroups. There were two phenotypes after cluster analysis, but no benefits of thymosin α1 were shown in phenotype 1 (HR 0.823 95% CI 0.581-1.166; p = 0.273) and phenotype 2 (HR 1.148 95% CI 0.710-1.895; p = 0.442). CONCLUSION: There was no association between use of thymosin α1 and decreased mortality in critically ill COVID-19 patients. Subgroups analysis and phenotype analysis also showed no differences on mortality after thymosin α1 therapy.


Subject(s)
Adjuvants, Immunologic/therapeutic use , COVID-19/drug therapy , COVID-19/mortality , SARS-CoV-2 , Thymalfasin/therapeutic use , Aged , Critical Illness , Female , Humans , Male , Middle Aged , Retrospective Studies , Survival Analysis
8.
BMC Pulm Med ; 20(1): 324, 2020 Dec 24.
Article in English | MEDLINE | ID: covidwho-992471

ABSTRACT

BACKGROUND: It had been shown that High-flow nasal cannula (HFNC) is an effective initial support strategy for patients with acute respiratory failure. However, the efficacy of HFNC for patients with COVID-19 has not been established. This study was performed to assess the efficacy of HFNC for patients with COVID-19 and describe early predictors of HFNC treatment success in order to develop a prediction tool that accurately identifies the need for upgrade respiratory support therapy. METHODS: We retrospectively reviewed the medical records of patients with COVID-19 treated by HFNC in respiratory wards of 2 hospitals in Wuhan between 1 January and 1 March 2020. Overall clinical outcomes, the success rate of HFNC strategy and related respiratory variables were evaluated. RESULTS: A total of 105 patients were analyzed. Of these, 65 patients (61.9%) showed improved oxygenation and were successfully withdrawn from HFNC. The PaO2/FiO2 ratio, SpO2/FiO2 ratio and ROX index (SpO2/FiO2*RR) at 6h, 12h and 24h of HFNC initiation were closely related to the prognosis. The ROX index after 6h of HFNC initiation (AUROC, 0.798) had good predictive capacity for outcomes of HFNC. In the multivariate logistic regression analysis, young age, gender of female, and lower SOFA score all have predictive value, while a ROX index greater than 5.55 at 6 h after initiation was significantly associated with HFNC success (OR, 17.821; 95% CI, 3.741-84.903 p<0.001). CONCLUSIONS: Our study indicated that HFNC was an effective way of respiratory support in the treatment of COVID-19 patients. The ROX index after 6h after initiating HFNC had good predictive capacity for HFNC outcomes.


Subject(s)
COVID-19/therapy , Hypoxia/therapy , Oxygen Inhalation Therapy/methods , Oxygen/administration & dosage , Oxygen/blood , Aged , COVID-19/complications , COVID-19/physiopathology , Cannula , Female , Humans , Hypoxia/physiopathology , Hypoxia/virology , Male , Middle Aged , Partial Pressure , Respiratory Rate , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
9.
Medicine (Baltimore) ; 99(45): e22971, 2020 Nov 06.
Article in English | MEDLINE | ID: covidwho-990916

ABSTRACT

Coronavirus disease 2019 (COVID-19) has rapidly spread on a global scale. Therefore, it is urgent to identify risk factors that could be associated with severe type of COVID-19 from common type.For this retrospective study, we recruited patients with COVID-19 in Wuhan and Zhoukou. Patients were classified into a severe group and common group based on guidelines after admission. Clinical manifestations and laboratory tests were compared, and univariate binary logistic regression and multivariate regression analyses were applied to assess potential risk factors.A total of 126 patients were recruited from January 23 to March 23, 2020. Ninety cases were identified as the common type and 36 as the severe type. The average age in the severe group was significantly older than that in the common group (P = .008). Patients with severe COVID-19 exhibited higher proportions of dyspnea (P = .001), weakness (P = .023), and diarrhea (P = .046). Moreover, there were more patients with hypertension (P = .01) or coinfection (P = .001) in the severe group than in the common group. Additionally, severe COVID-19 was associated with increased neutrophil counts (P < .001), C-reactive protein (P < .001), procalcitonin (P = .024) and decreased lymphocyte counts (P = .001), hemoglobin (P < .001), total protein (TP) (P < .001), and albumin (ALB) (P < .001). Based on logistic regression analysis, dyspnea (P < .001), TP (P = .042), and ALB (P = .003) were independent risk factors for severe disease.Patients with lower TP, ALB, and dyspnea should be carefully monitored, and early intervention should be implemented to prevent the development of severe disease.


Subject(s)
Coronavirus Infections/diagnosis , Disease Progression , Hospitalization , Pneumonia, Viral/diagnosis , Adult , Aged , Aged, 80 and over , Betacoronavirus , Blood Proteins/analysis , C-Reactive Protein/analysis , COVID-19 , China , Dyspnea/virology , Female , Humans , Male , Middle Aged , Pandemics , Retrospective Studies , Risk Factors , SARS-CoV-2 , Serum Albumin, Human/analysis , Young Adult
10.
SSRN; 2020.
Preprint | SSRN | ID: ppcovidwho-1687

ABSTRACT

Background: Non-invasive respiratory therapies (NIRTs) (high flow nasal cannula and non-invasive ventilation) are widely used in COVID-19 patients who develop

14.
Intensive Care Med ; 46(10): 1863-1872, 2020 10.
Article in English | MEDLINE | ID: covidwho-725842

ABSTRACT

PURPOSE: An ongoing outbreak of coronavirus disease 2019 (COVID-19) emerged in Wuhan since December 2019 and spread globally. However, information about critically ill patients with COVID-19 is still limited. We aimed to describe the clinical characteristics and outcomes of critically ill patients with COVID-19 and figure out the risk factors of mortality. METHODS: We extracted data retrospectively regarding 733 critically ill adult patients with laboratory-confirmed COVID-19 from 19 hospitals in China through January 1 to February 29, 2020. Demographic data, symptoms, laboratory values, comorbidities, treatments, and clinical outcomes were collected. The primary outcome was 28-day mortality. Data were compared between survivors and non-survivors. RESULTS: Of the 733 patients included in the study, the median (IQR) age was 65 (56-73) years and 256 (34.9%) were female. Among these patients, the median (IQR) APACHE II score was 10 (7 to 14) and 28-day mortality was 53.8%. Respiratory failure was the most common organ failure (597 [81.5%]), followed by shock (20%), thrombocytopenia (18.8%), central nervous system (8.6%) and renal dysfunction (8%). Multivariate Cox regression analysis showed that older age, malignancies, high APACHE II score, high D-dimer level, low PaO2/FiO2 level, high creatinine level, high hscTnI level and low albumin level were independent risk factors of 28-day mortality in critically ill patients with COVID-19. CONCLUSION: In this case series of critically ill patients with COVID-19 who were admitted into the ICU, more than half patients died at day 28. The higher percentage of organ failure in these patients indicated a significant demand for critical care resources.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/mortality , Critical Illness , Intensive Care Units , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Aged , Betacoronavirus , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disease Outbreaks , Female , Humans , Kidney Diseases/epidemiology , Kidney Diseases/etiology , Male , Middle Aged , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Proportional Hazards Models , Respiratory Insufficiency/epidemiology , Respiratory Insufficiency/etiology , Retrospective Studies , Risk Factors , SARS-CoV-2 , Shock/epidemiology , Shock/etiology , Thrombocytopenia/epidemiology , Thrombocytopenia/etiology
15.
Crit Care Med ; 48(9): 1289-1295, 2020 09.
Article in English | MEDLINE | ID: covidwho-317610

ABSTRACT

OBJECTIVES: Severe acute respiratory distress syndrome is complicated with coronavirus disease 2019 and extracorporeal membrane oxygenation support may be necessary in severe cases. This study is to summarize the clinical features, extracorporeal membrane oxygenation characteristics, and outcomes of patients with severe acute respiratory syndrome coronavirus 2 pneumonia received extracorporeal membrane oxygenation. DESIGN: Descriptive study from two hospitals. SETTING: The ICUs from university hospitals. PATIENTS: Patients with severe acute respiratory syndrome coronavirus 2 pneumonia received mechanical ventilation, including those underwent extracorporeal membrane oxygenation from Zhongnan Hospital of Wuhan University and Wuhan Pulmonary Hospital from January 8, 2020, to March 31, 2020. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Clinical records, laboratory results, ventilator parameters, and extracorporeal membrane oxygenation-related data were abstracted from the medical records. One-hundred twenty-nine critically ill patients with severe acute respiratory syndrome coronavirus 2 pneumonia were admitted to ICU of the two referral hospitals. Fifty-nine patients received mechanical ventilation and 21 of them received extracorporeal membrane oxygenation support (fourteen from Zhongnan hospital and seven from Wuhan pulmonary hospital). Compared to mechanical ventilation patients without extracorporeal membrane oxygenation support, there was a tendency of decline in mortality but with no significant difference (no-extracorporeal membrane oxygenation group 24/38 [63.2%] vs extracorporeal membrane oxygenation group 12/21 [57.1%]; p = 0.782). For those patients with extracorporeal membrane oxygenation, 12 patients died and nine survived by April 7, 2020. Among extracorporeal membrane oxygenation patients, the PaCO2 prior to extracorporeal membrane oxygenation was lower (54.40 mm Hg [29.20-57.50 mm Hg] vs 63.20 mm Hg [55.40-72.12 mm Hg]; p = 0.006), and pH prior to extracorporeal membrane oxygenation was higher (7.38 [7.28-7.48] vs 7.23 [7.16-7.33]; p = 0.023) in survivors than nonsurvivors. CONCLUSIONS: Extracorporeal membrane oxygenation might be an effective salvage treatment for patients with severe acute respiratory syndrome coronavirus 2 pneumonia associated with severe acute respiratory distress syndrome. Severe CO2 retention and acidosis prior to extracorporeal membrane oxygenation indicated a poor prognosis.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Extracorporeal Membrane Oxygenation , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/therapy , Aged , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Extracorporeal Membrane Oxygenation/adverse effects , Extracorporeal Membrane Oxygenation/mortality , Female , Hospitals, University , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Prognosis , Respiration, Artificial , Respiratory Distress Syndrome/etiology , Respiratory Function Tests , SARS-CoV-2
16.
Chest ; 158(1): 195-205, 2020 07.
Article in English | MEDLINE | ID: covidwho-100891

ABSTRACT

BACKGROUND: Since the outbreak of coronavirus disease 2019 (COVID-19) in China in December 2019, considerable attention has been focused on its elucidation. However, it is also important for clinicians and epidemiologists to differentiate COVID-19 from other respiratory infectious diseases such as influenza viruses. RESEARCH QUESTION: The aim of this study was to explore the different clinical presentations between COVID-19 and influenza A (H1N1) pneumonia in patients with ARDS. STUDY DESIGN AND METHODS: This analysis was a retrospective case-control study. Two independent cohorts of patients with ARDS infected with either COVID-19 (n = 73) or H1N1 (n = 75) were compared. Their clinical manifestations, imaging characteristics, treatments, and prognosis were analyzed and compared. RESULTS: The median age of patients with COVID-19 was higher than that of patients with H1N1, and there was a higher proportion of male subjects among the H1N1 cohort (P < .05). Patients with COVID-19 exhibited higher proportions of nonproductive coughs, fatigue, and GI symptoms than those of patients with H1N1 (P < .05). Patients with H1N1 had higher Sequential Organ Failure Assessment (SOFA) scores than patients with COVID-19 (P < .05). The Pao2/Fio2 of 198.5 mm Hg in the COVID-19 cohort was significantly higher than the Pao2/Fio2 of 107.0 mm Hg in the H1N1 cohort (P < .001). Ground-glass opacities was more common in patients with COVID-19 than in patients with H1N1 (P < .001). There was a greater variety of antiviral therapies administered to COVID-19 patients than to H1N1 patients. The in-hospital mortality of patients with COVID-19 was 28.8%, whereas that of patients with H1N1 was 34.7% (P = .483). SOFA score-adjusted mortality of H1N1 patients was significantly higher than that of COVID-19 patients, with a rate ratio of 2.009 (95% CI, 1.563-2.583; P < .001). INTERPRETATION: There were many differences in clinical presentations between patients with ARDS infected with either COVID-19 or H1N1. Compared with H1N1 patients, patients with COVID-19-induced ARDS had lower severity of illness scores at presentation and lower SOFA score-adjusted mortality.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections , Hospital Mortality , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human , Pandemics , Pneumonia, Viral , Symptom Assessment , Age Factors , Antiviral Agents/therapeutic use , COVID-19 , Case-Control Studies , China/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Diagnosis, Differential , Female , Humans , Influenza, Human/diagnosis , Influenza, Human/mortality , Influenza, Human/physiopathology , Male , Middle Aged , Organ Dysfunction Scores , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Prognosis , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Symptom Assessment/methods , Symptom Assessment/statistics & numerical data
17.
Eur Respir J ; 55(5)2020 05.
Article in English | MEDLINE | ID: covidwho-47800

ABSTRACT

The aim of this study was to identify factors associated with the death of patients with COVID-19 pneumonia caused by the novel coronavirus SARS-CoV-2.All clinical and laboratory parameters were collected prospectively from a cohort of patients with COVID-19 pneumonia who were hospitalised to Wuhan Pulmonary Hospital (Wuhan City, Hubei Province, China) between 25 December 2019 and 7 February 2020. Univariate and multivariate logistic regression analysis revealed that age ≥65 years (OR 3.765, 95% CI 1.146­17.394; p=0.023), pre-existing concurrent cardiovascular or cerebrovascular diseases (OR 2.464, 95% CI 0.755­8.044; p=0.007), CD3+CD8+ T-cells ≤75 cells·µL−1 (OR 3.982, 95% CI 1.132­14.006; p<0.001) and cardiac troponin I ≥0.05 ng·mL−1 (OR 4.077, 95% CI 1.166­14.253; p<0.001) were associated with an increase in risk of mortality from COVID-19 pneumonia." has been corrected to: "Univariate and multivariate logistic regression analysis revealed that age ≥65 years (OR 3.765, 95% CI 1.201−11.803; p=0.023), pre-existing concurrent cardiovascular or cerebrovascular diseases (OR 2.464, 95% CI 1.279−4.747; p=0.007), CD3+CD8+ T-cells ≤75 cells·µL−1 (OR 3.982, 95% CI 1.761­9.004; p<0.001) and cardiac troponin I ≥0.05 ng·mL−1 (OR 4.077, 95% CI 1.778­9.349; p<0.001) were associated with an increase in risk of mortality from COVID-19 pneumonia. In a sex-, age- and comorbid illness-matched case-control study, CD3+CD8+ T-cells ≤75 cells·µL-1 and cardiac troponin I ≥0.05 ng·mL-1 remained as predictors for high mortality from COVID-19 pneumonia.We identified four risk factors: age ≥65 years, pre-existing concurrent cardiovascular or cerebrovascular diseases, CD3+CD8+ T-cells ≤75 cells·µL-1 and cardiac troponin I ≥0.05 ng·mL-1 The latter two factors, especially, were predictors for mortality of COVID-19 pneumonia patients.


Subject(s)
Coronavirus Infections/mortality , Coronavirus , Pneumonia, Viral/mortality , Adult , Age Distribution , Age Factors , Aged , Aged, 80 and over , Betacoronavirus , CD8-Positive T-Lymphocytes , COVID-19 , Cardiovascular Diseases/epidemiology , Case-Control Studies , Cerebrovascular Disorders/epidemiology , China , Comorbidity , Coronavirus Infections/diagnosis , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Prospective Studies , SARS-CoV-2 , Troponin I/blood
18.
Ann Am Thorac Soc ; 17(7): 839-846, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-38758

ABSTRACT

Rationale: The current outbreak of coronavirus disease (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan, China, spreads across national and international borders. The overall death rate of COVID-19 pneumonia in the Chinese population was 4%.Objectives: To describe the process of hospitalization and critical care of patients who died of COVID-19 pneumonia.Methods: This was a multicenter observational study of 109 decedents with COVID-19 pneumonia from three hospitals in Wuhan. Demographic, clinical, laboratory, and treatment data were collected and analyzed, and the final date of follow-up was February 24, 2020.Results: The mean age of 109 decedents with COVID-19 pneumonia was 70.7 years, 35 patients (32.1%) were female, and 85 patients (78.0%) suffered from one or more underlying comorbidities. Multiple organ failure, especially respiratory failure and heart failure, appeared in all patients even at the early stage of disease. Overall, the mean time from onset of symptoms to death was 22.3 days. All 109 hospitalized patients needed admission to an intensive care unit (ICU); however, because of limited availability, only 51 (46.8%) could be admitted. The period from hospitalization to death in the ICU group and non-ICU group was 15.9 days (standard deviation = 8.8 d) and 12.5 days (8.6 d, P = 0.044), respectively.Conclusions: Mortality due to COVID-19 pneumonia was concentrated in patients above the age of 65 years, especially those with major comorbidities. Patients who were admitted to the ICU lived longer than those who were not. Our findings should aid in the recognition and clinical management of such infections, especially with regard to ICU resource allocation.


Subject(s)
Betacoronavirus , Coronavirus Infections , Critical Care/methods , Multiple Organ Failure , Pandemics , Pneumonia, Viral , Respiratory Insufficiency , Aged , Betacoronavirus/isolation & purification , Betacoronavirus/pathogenicity , COVID-19 , China/epidemiology , Comorbidity , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Female , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Male , Mortality , Multiple Organ Failure/diagnosis , Multiple Organ Failure/etiology , Outcome and Process Assessment, Health Care , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/etiology , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Prognosis , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Risk Assessment , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL