Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Life Sci ; : 119046, 2021 Jan 13.
Article in English | MEDLINE | ID: covidwho-1030918

ABSTRACT

BACKGROUND: The pandemic of the coronavirus disease 2019 (COVID-19) has brought a global public health crisis. However, the pathogenesis underlying COVID-19 are barely understood. METHODS: In this study, we performed proteomic analyses of airway mucus obtained by bronchoscopy from severe COVID-19 patients. In total, 2351 and 2073 proteins were identified and quantified in COVID-19 patients and healthy controls, respectively. RESULTS: Among them, 92 differentiated expressed proteins (DEPs) (46 up-regulated and 46 down-regulated) were found with a fold change >1.5 or <0.67 and a p-value <0.05, and 375 proteins were uniquely present in airway mucus from COVID-19 patients. Pathway and network enrichment analyses revealed that the 92 DEPs were mostly associated with metabolic, complement and coagulation cascades, lysosome, and cholesterol metabolism pathways, and the 375 COVID-19 only proteins were mainly enriched in amino acid degradation (Valine, Leucine and Isoleucine degradation), amino acid metabolism (beta-Alanine, Tryptophan, Cysteine and Methionine metabolism), oxidative phosphorylation, phagosome, and cholesterol metabolism pathways. CONCLUSIONS: This study aims to provide fundamental data for elucidating proteomic changes of COVID-19, which may implicate further investigation of molecular targets directing at specific therapy.

2.
Shock ; 2021 Jan 13.
Article in English | MEDLINE | ID: covidwho-1029247

ABSTRACT

ABSTRACT: The ongoing coronavirus disease 2019 (COVID-19) pandemic has swept over the world and causes thousands of deaths. Although the clinical features of COVID-19 become much clearer than before, there are still further problems with the pathophysiological process and treatments of severe patients. One primary problem is with the paradoxical immune states in severe patients with COVID-19. Studies indicate that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can attack the immune system, manifested as a state of immunosuppression with a decrease in lymphocytes, whereas a state of hyperinflammation, presenting as elevated cytokine levels, is also detected in COVID-19. Therefore, discussing the specific status of immunity in COVID-19 will contribute to the understanding of its pathophysiology and the search for appropriate treatments. Here, we review all the available literature concerning the different immune states in COVID-19 and the underlying pathophysiological mechanisms. In addition, the association between immune states and the development and severity of disease as well as the impact on the selection of immunotherapy strategies are discussed in our review.

3.
Ann Intensive Care ; 11(1): 5, 2021 Jan 09.
Article in English | MEDLINE | ID: covidwho-1015901

ABSTRACT

BACKGROUND: Few specific medications have been proven effective for the treatment of patients with severe coronavirus disease 2019 (COVID-19). Here, we tested whether high-dose vitamin C infusion was effective for severe COVID-19. METHODS: This randomized, controlled, clinical trial was performed at 3 hospitals in Hubei, China. Patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the ICU were randomly assigned in as 1:1 ratio to either the high-dose intravenous vitamin C (HDIVC) or the placebo. HDIVC group received 12 g of vitamin C/50 ml every 12 h for 7 days at a rate of 12 ml/hour, and the placebo group received bacteriostatic water for injection in the same way within 48 h of arrival to ICU. The primary outcome was invasive mechanical ventilation-free days in 28 days (IMVFD28). Secondary outcomes were 28-day mortality, organ failure (Sequential Organ Failure Assessment (SOFA) score), and inflammation progression (interleukin-6). RESULTS: Only 56 critical COVID-19 patients were ultimately recruited due to the early control of the outbreak. There was no difference in IMVFD28 between two groups (26.0 [9.0-28.0] in HDIVC vs 22.0 [8.50-28.0] in control, p = 0.57). HDIVC failed to reduce 28-day mortality (P = 0.27). During the 7-day treatment period, patients in the HDIVC group had a steady rise in the PaO2/FiO2 (day 7: 229 vs. 151 mmHg, 95% CI 33 to 122, P = 0.01), which was not observed in the control group. IL-6 in the HDIVC group was lower than that in the control group (19.42 vs. 158.00; 95% CI -301.72 to -29.79; P = 0.04) on day 7. CONCLUSION: This pilot trial showed that HDIVC failed to improve IMVFD28, but might show a potential signal of benefit in oxygenation for critically ill patients with COVID-19 improving PaO2/FiO2 even though.

4.
Crit Care ; 24(1): 698, 2020 12 18.
Article in English | MEDLINE | ID: covidwho-992532

ABSTRACT

BACKGROUND: Corticoid therapy has been recommended in the treatment of critically ill patients with COVID-19, yet its efficacy is currently still under evaluation. We investigated the effect of corticosteroid treatment on 90-day mortality and SARS-CoV-2 RNA clearance in severe patients with COVID-19. METHODS: 294 critically ill patients with COVID-19 were recruited between December 30, 2019 and February 19, 2020. Logistic regression, Cox proportional-hazards model and marginal structural modeling (MSM) were applied to evaluate the associations between corticosteroid use and corresponding outcome variables. RESULTS: Out of the 294 critically ill patients affected by COVID-19, 183 (62.2%) received corticosteroids, with methylprednisolone as the most frequently administered corticosteroid (175 accounting for 96%). Of those treated with corticosteroids, 69.4% received corticosteroid prior to ICU admission. When adjustments and subgroup analysis were not performed, no significant associations between corticosteroids use and 90-day mortality or SARS-CoV-2 RNA clearance were found. However, when stratified analysis based on corticosteroid initiation time was performed, there was a significant correlation between corticosteroid use (≤ 3 day after ICU admission) and 90-day mortality (logistic regression adjusted for baseline: OR 4.49, 95% CI 1.17-17.25, p = 0.025; Cox adjusted for baseline and time varying variables: HR 3.89, 95% CI 1.94-7.82, p < 0.001; MSM adjusted for baseline and time-dependent variants: OR 2.32, 95% CI 1.16-4.65, p = 0.017). No association was found between corticosteroid use and SARS-CoV-2 RNA clearance even after stratification by initiation time of corticosteroids and adjustments for confounding factors (corticosteroids use ≤ 3 days initiation vs no corticosteroids use) using MSM were performed. CONCLUSIONS: Early initiation of corticosteroid use (≤ 3 days after ICU admission) was associated with an increased 90-day mortality. Early use of methylprednisolone in the ICU is therefore not recommended in patients with severe COVID-19.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , /mortality , Critical Care/methods , Critical Illness/mortality , Methylprednisolone/therapeutic use , Adrenal Cortex Hormones/adverse effects , Adult , Critical Illness/therapy , Female , Hospital Mortality , Humans , Male , Methylprednisolone/adverse effects , Middle Aged , Retrospective Studies
5.
J Am Coll Radiol ; 17(12): 1546, 2020 12.
Article in English | MEDLINE | ID: covidwho-893981
7.
Preprint | SSRN | ID: ppcovidwho-595

ABSTRACT

Background: The epidemiological and clinical characteristics of corona virus disease 2019 (COVID-19) patients in the cities near to Wuhan remain not very clear

9.
BMJ Open ; 10(7): e039519, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-639482

ABSTRACT

INTRODUCTION: The rapid worldwide spread of COVID-19 has caused a global health crisis. To date, symptomatic supportive care has been the most common treatment. It has been reported that the mechanism of COVID-19 is related to cytokine storms and subsequent immunogenic damage, especially damage to the endothelium and alveolar membrane. Vitamin C (VC), also known as L-ascorbic acid, has been shown to have antimicrobial and immunomodulatory properties. A high dose of intravenous VC (HIVC) was proven to block several key components of cytokine storms, and HIVC showed safety and varying degrees of efficacy in clinical trials conducted on patients with bacterial-induced sepsis and acute respiratory distress syndrome (ARDS). Therefore, we hypothesise that HIVC could be added to the treatment of ARDS and multiorgan dysfunction related to COVID-19. METHODS AND ANALYSIS: The investigators designed a multicentre prospective randomised placebo-controlled trial that is planned to recruit 308 adults diagnosed with COVID-19 and transferred into the intensive care unit. Participants will randomly receive HIVC diluted in sterile water or placebo for 7 days once enrolled. Patients with a history of VC allergy, end-stage pulmonary disease, advanced malignancy or glucose-6-phosphate dehydrogenase deficiency will be excluded. The primary outcome is ventilation-free days within 28 observational days. This is one of the first clinical trials applying HIVC to treat COVID-19, and it will provide credible efficacy and safety data. We predict that HIVC could suppress cytokine storms caused by COVID-19, help improve pulmonary function and reduce the risk of ARDS of COVID-19. ETHICS AND DISSEMINATION: The study protocol was approved by the Ethics Committee of Zhongnan Hospital of Wuhan University (identifiers: Clinical Ethical Approval No. 2020001). Findings of the trial will be disseminated through peer-reviewed journals and scientific conferences. TRIAL REGISTRATION NUMBER: NCT04264533.


Subject(s)
Ascorbic Acid/administration & dosage , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/drug therapy , Pneumonia, Viral/drug therapy , Vitamins/administration & dosage , Administration, Intravenous , Betacoronavirus , China , Coronavirus Infections/complications , Coronavirus Infections/immunology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Hospital Mortality , Humans , Intensive Care Units , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Respiration, Artificial , Severity of Illness Index , Treatment Outcome
10.
Diagn Pathol ; 15(1): 78, 2020 Jun 29.
Article in English | MEDLINE | ID: covidwho-617314

ABSTRACT

BACKGROUND: The outbreak of a novel coronavirus since December 2019, became an emergency of major international concern. As of June 21, 2020, the SARS-CoV-2 pandemic has caused 8,769,844 confirmed infections with 463,745 fatal cases worldwide. The SARS-CoV-2 outbreak is a major challenge for clinicians. In our clinic, we found a rare case that a COVID-19 patient combined with ischemic stroke. CASE PRESENTATION: A 79-year-old man was admitted to the Hubei Provincial Hospital of Traditional Chinese Medicine due to right limb weakness for 1 day and slight cough for 1 week. At presentation, his oxygen saturation was 94.2% on room air and body temperature was 37.3 °C (99.0 °F) with some moist rales. Neurological examination showed right limb weakness, and the limb muscle strength was grade 4. The left leg and arms were unaffected. In addition, runs of speech were not fluent enough with tongue deviation. Laboratory studies showed lymphopenia and eosinophilic granulocytopenia. Chest CT revealed bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities, with a peripheral lung distribution. Real-time polymerase chain reaction (RT-PCR) from throat swab sample was positive for SARS-CoV-2 nucleic acid. This patient was treated with antiviral drugs and anti-inflammatory drugs with supportive care until his discharge. Clopidogrel (75 mg) and atorvastatin (20 mg) were administered orally to treat acute ischemic stroke. After 12 days of treatment, he can walk normally and communicate with near fluent language. CONCLUSION: We report an even more unusual case, a patient who was hospitalized for right limb weakness and was later diagnosed with COVID-19. Here, SARS-CoV-2 infection caused hypoxemia and excessive secretion of inflammatory cytokines, which contribute to the occurrence and development of ischemic stroke. Once COVID-19 patients show acute ischemic stroke, neurologists should cooperate with infectious disease doctors to help patients.


Subject(s)
Betacoronavirus , Brain Ischemia/virology , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Stroke/virology , Aged , Betacoronavirus/isolation & purification , Brain Ischemia/diagnosis , Coronavirus Infections/complications , Humans , Male , Pandemics , Pneumonia, Viral/complications , Stroke/diagnosis
11.
Open Forum Infect. Dis. ; 5(7)20200501.
Article in English | ELSEVIER | ID: covidwho-141772

ABSTRACT

Background. Clinical findings indicated that a fraction of coronavirus disease 2019 (COVID-19) patients diagnosed as mild early may progress to severe cases. However, it is difficult to distinguish these patients in the early stage. The present study aimed to describe the clinical characteristics of these patients, analyze related factors, and explore predictive markers of the disease aggravation. Methods. Clinical and laboratory data of nonsevere adult COVID-19 patients in Changsha, China, were collected and analyzed on admission. A logistic regression model was adopted to analyze the association between the disease aggravation and related factors. The receiver operating characteristic curve (ROC) was utilized to analyze the prognostic ability of C-reactive protein (CRP). Results. About 7.7% (16/209) of nonsevere adult COVID-19 patients progressed to severe cases after admission. Compared with nonsevere patients, the aggravated patients had much higher levels of CRP (median [range], 43.8 [12.3-101.9] mg/L vs 12.1 [0.1- 91.4] mg/L; P = .000). A regression analysis showed that CRP was significantly associated with aggravation of nonsevere COVID-19 patients, with an area under the curve of 0.844 (95% confidence interval, 0.761-0.926) and an optimal threshold value of 26.9 mg/L. Conclusions. CRP could be a valuable marker to anticipate the possibility of aggravation of nonsevere adult COVID-19 patients, with an optimal threshold value of 26.9 mg/L.

12.
J Am Coll Radiol ; 17(6): 701-709, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-56293

ABSTRACT

PURPOSE: To date, considerable knowledge gaps remain regarding the chest CT imaging features of coronavirus disease 2019 (COVID-19). We performed a systematic review and meta-analysis of results from published studies to date to provide a summary of evidence on detection of COVID-19 by chest CT and the expected CT imaging manifestations. METHODS: Studies were identified by searching PubMed database for articles published between December 2019 and February 2020. Pooled CT positive rate of COVID-19 and pooled incidence of CT imaging findings were estimated using a random-effect model. RESULTS: A total of 13 studies met inclusion criteria. The pooled positive rate of the CT imaging was 89.76% and 90.35% when only including thin-section chest CT. Typical CT signs were ground glass opacities (83.31%), ground glass opacities with mixed consolidation (58.42%), adjacent pleura thickening (52.46%), interlobular septal thickening (48.46%), and air bronchograms (46.46%). Other CT signs included crazy paving pattern (14.81%), pleural effusion (5.88%), bronchiectasis (5.42%), pericardial effusion (4.55%), and lymphadenopathy (3.38%). The most anatomic distributions were bilateral lung infection (78.2%) and peripheral distribution (76.95%). The incidences were highest in the right lower lobe (87.21%), left lower lobe (81.41%), and bilateral lower lobes (65.22%). The right upper lobe (65.22%), right middle lobe (54.95%), and left upper lobe (69.43%) were also commonly involved. The incidence of bilateral upper lobes was 60.87%. A considerable proportion of patients had three or more lobes involved (70.81%). CONCLUSIONS: The detection of COVID-19 chest CT imaging is very high among symptomatic individuals at high risk, especially using thin-section chest CT. The most common CT features in patients affected by COVID-19 included ground glass opacities and consolidation involving the bilateral lungs in a peripheral distribution.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/epidemiology , Pandemics/statistics & numerical data , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/epidemiology , Tomography, X-Ray Computed/methods , Coronavirus Infections/pathology , Female , Humans , Male , Pneumonia, Viral/pathology , Radiography, Thoracic/methods , Sensitivity and Specificity , Tomography, X-Ray Computed/statistics & numerical data
13.
Int J Antimicrob Agents ; 55(5): 105955, 2020 May.
Article in English | MEDLINE | ID: covidwho-17681

ABSTRACT

In December 2019, the outbreak of the novel coronavirus disease (COVID-19) in China spread worldwide, becoming an emergency of major international concern. SARS-CoV-2 infection causes clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus. Human-to-human transmission via droplets, contaminated hands or surfaces has been described, with incubation times of 2-14 days. Early diagnosis, quarantine, and supportive treatments are essential to cure patients. This paper reviews the literature on all available information about the epidemiology, diagnosis, isolation and treatments of COVID-19. Treatments, including antiviral agents, chloroquine and hydroxychloroquine, corticosteroids, antibodies, convalescent plasma transfusion and vaccines, are discussed in this article. In addition, registered trials investigating treatment options for COVID-19 infection are listed.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Antiviral Agents/therapeutic use , Clinical Laboratory Techniques , Clinical Trials as Topic , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL