Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Research (Wash D C) ; 2022: 9767643, 2022.
Article in English | MEDLINE | ID: covidwho-2072476


Sepsis is a life-threatening organ dysfunction characterized by severe systemic inflammatory response to infection. Effective treatment of bacterial sepsis remains a paramount clinical challenge, due to its astonishingly rapid progression and the prevalence of bacterial drug resistance. Here, we present a decoy nanozyme-enabled intervention strategy for multitarget blockade of proinflammatory cascades to treat multi-drug-resistant (MDR) bacterial sepsis. The decoy nanozymes (named MCeC@MΦ) consist mesoporous silica nanoparticle cores loaded with CeO2 nanocatalyst and Ce6 photosensitizer and biomimetic shells of macrophage membrane. By acting as macrophage decoys, MCeC@MΦ allow targeted photodynamic eradication of MDR bacteria and realize simultaneous endotoxin/proinflammatory cytokine neutralization. Meanwhile, MCeC@MΦ possess intriguing superoxide dismutase and catalase-like activities as well as hydroxyl radical antioxidant capacity and enable catalytic scavenging of multiple reactive oxygen species (ROS). These unique capabilities make MCeC@MΦ to collaboratively address the issues of bacterial infection, endotoxin/proinflammatory cytokine secretion, and ROS burst, fully cutting off the path of proinflammatory cascades to reverse the progression of bacterial sepsis. In vivo experiments demonstrate that MCeC@MΦ considerably attenuate systemic hyperinflammation and rapidly rescue organ damage within 1 day to confer higher survival rates (>75%) to mice with progressive MDR Escherichia coli bacteremia. The proposed decoy nanozyme-enabled multitarget collaborative intervention strategy offers a powerful modality for bacterial sepsis management and opens up possibilities for the treatment of cytokine storm in the COVID-19 pandemic and immune-mediated inflammation diseases.

Phys Chem Chem Phys ; 24(7): 4324-4333, 2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1671657


The COVID-19 pandemic caused by SARS-CoV-2 has been declared a global health crisis. The development of anti-SARS-CoV-2 drugs heavily depends on the systematic study of the critical biological processes of key proteins of coronavirus among which the main proteinase (Mpro) dimerization is a key step for virus maturation. Because inhibiting the Mpro dimerization can efficiently suppress virus maturation, the key residues that mediate dimerization can be treated as targets of drug and antibody developments. In this work, the structure and energy features of the Mpro dimer of SARS-CoV-2 and SARS-CoV were studied using molecular dynamics (MD) simulations. The free energy calculations using the Generalized Born (GB) model showed that the dimerization free energy of the SARS-CoV-2 Mpro dimer (-107.5 ± 10.89 kcal mol-1) is larger than that of the SARS-CoV Mpro dimer (-92.83 ± 9.81 kcal mol-1), indicating a more stable and possibly a quicker formation of the Mpro dimer of SARS-CoV-2. In addition, the energy decomposition of each residue revealed 11 key attractive residues. Furthermore, Thr285Ala weakens the steric hindrance between the two protomers of SARS-CoV-2 that can form more intimate interactions. It is interesting to find 11 repulsive residues which effectively inhibit the dimerization process. At the interface of the Mpro dimer, we detected three regions that are rich in interfacial water which stabilize the SARS-CoV-2 Mpro dimer by forming hydrogen bonds with two protomers. The key residues and rich water regions provide important targets for the future design of anti-SARS-CoV-2 drugs through inhibiting Mpro dimerization.

Coronavirus 3C Proteases/chemistry , SARS-CoV-2/enzymology , COVID-19 , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Protein Multimerization