Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Talanta ; 245: 123486, 2022 Apr 18.
Article in English | MEDLINE | ID: covidwho-1796081

ABSTRACT

Cancer is the leading cause of death in many countries. The development of new methods for early screening of cancers is highly desired. Targeted metallomics has been successfully applied in the screening of cancers through quantification of elements in the matrix, which is time consuming and requires combined techniques for the quantification due to the large elemental difference in the matrix. This work proposed a non-targeted metallomics (NTM) approach through synchrotron radiation based X-ray fluorescence (SRXRF) and machine learning algorithms (MLAs) for the screening of cancers. One hundred serum samples were collected from cancer patients who were confirmed by pathological examination with 100 matched serum samples from healthy volunteers. The serum samples were studied with SRXRF and the spectra from both groups were directly clarified through MLAs, which did not require the quantification of elements. The NTM approach through SRXRF and MLAs is fast (5s for data collection for one sample) and accurate (over 96% accuracy) for cancer screening. Besides, this approach can also identify the most affected elements in cancer samples like Ca, Zn and Ti as we found, which may shed lights on the drug development for cancer treatment. This NTM approach can also be applied through commercially available XRF instruments or ICP-TOF-MS with MLAs. It has the potential for the screening and prediction of other diseases like COVID-19 and neurodegenerative diseases in a high throughput and least invasive way.

2.
Chemical science ; 13(11):3216-3226, 2022.
Article in English | EuropePMC | ID: covidwho-1782305

ABSTRACT

The ongoing COVID-19 pandemic caused by SARS-CoV-2 highlights the urgent need to develop sensitive methods for diagnosis and prognosis. To achieve this, multidimensional detection of SARS-CoV-2 related parameters including virus loads, immune response, and inflammation factors is crucial. Herein, by using metal-tagged antibodies as reporting probes, we developed a multiplex metal-detection based assay (MMDA) method as a general multiplex assay strategy for biofluids. This strategy provides extremely high multiplexing capability (theoretically over 100) compared with other reported biofluid assay methods. As a proof-of-concept, MMDA was used for serologic profiling of anti-SARS-CoV-2 antibodies. The MMDA exhibits significantly higher sensitivity and specificity than ELISA for the detection of anti-SARS-CoV-2 antibodies. By integrating the high dimensional data exploration/visualization tool (tSNE) and machine learning algorithms with in-depth analysis of multiplex data, we classified COVID-19 patients into different subgroups based on their distinct antibody landscape. We unbiasedly identified anti-SARS-CoV-2-nucleocapsid IgG and IgA as the most potently induced types of antibodies for COVID-19 diagnosis, and anti-SARS-CoV-2-spike IgA as a biomarker for disease severity stratification. MMDA represents a more accurate method for the diagnosis and disease severity stratification of the ongoing COVID-19 pandemic, as well as for biomarker discovery of other diseases. A MMDA platform is developed by using metal-tagged antibodies as reporting probes combined with machine learning algorithms, as a general strategy for highly multiplexed biofluid assay.

3.
Adv Sci (Weinh) ; 9(14): e2104333, 2022 05.
Article in English | MEDLINE | ID: covidwho-1782562

ABSTRACT

Coronavirus disease 2019 (COVID-19) remains a global public health threat. Hence, more effective and specific antivirals are urgently needed. Here, COVID-19 hyperimmune globulin (COVID-HIG), a passive immunotherapy, is prepared from the plasma of healthy donors vaccinated with BBIBP-CorV (Sinopharm COVID-19 vaccine). COVID-HIG shows high-affinity binding to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein, the receptor-binding domain (RBD), the N-terminal domain of the S protein, and the nucleocapsid protein; and blocks RBD binding to human angiotensin-converting enzyme 2 (hACE2). Pseudotyped and authentic virus-based assays show that COVID-HIG displays broad-spectrum neutralization effects on a wide variety of SARS-CoV-2 variants, including D614G, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Kappa (B.1.617.1), Delta (B.1.617.2), and Omicron (B.1.1.529) in vitro. However, a significant reduction in the neutralization titer is detected against Beta, Delta, and Omicron variants. Additionally, assessments of the prophylactic and treatment efficacy of COVID-HIG in an Adv5-hACE2-transduced IFNAR-/- mouse model of SARS-CoV-2 infection show significantly reduced weight loss, lung viral loads, and lung pathological injury. Moreover, COVID-HIG exhibits neutralization potency similar to that of anti-SARS-CoV-2 hyperimmune globulin from pooled convalescent plasma. Overall, the results demonstrate the potential of COVID-HIG against SARS-CoV-2 infection and provide reference for subsequent clinical trials.


Subject(s)
COVID-19 Vaccines , COVID-19 , Globulins , Animals , COVID-19/therapy , Globulins/therapeutic use , Humans , Immunization, Passive , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
4.
Chem Sci ; 13(11): 3216-3226, 2022 Mar 16.
Article in English | MEDLINE | ID: covidwho-1764224

ABSTRACT

The ongoing COVID-19 pandemic caused by SARS-CoV-2 highlights the urgent need to develop sensitive methods for diagnosis and prognosis. To achieve this, multidimensional detection of SARS-CoV-2 related parameters including virus loads, immune response, and inflammation factors is crucial. Herein, by using metal-tagged antibodies as reporting probes, we developed a multiplex metal-detection based assay (MMDA) method as a general multiplex assay strategy for biofluids. This strategy provides extremely high multiplexing capability (theoretically over 100) compared with other reported biofluid assay methods. As a proof-of-concept, MMDA was used for serologic profiling of anti-SARS-CoV-2 antibodies. The MMDA exhibits significantly higher sensitivity and specificity than ELISA for the detection of anti-SARS-CoV-2 antibodies. By integrating the high dimensional data exploration/visualization tool (tSNE) and machine learning algorithms with in-depth analysis of multiplex data, we classified COVID-19 patients into different subgroups based on their distinct antibody landscape. We unbiasedly identified anti-SARS-CoV-2-nucleocapsid IgG and IgA as the most potently induced types of antibodies for COVID-19 diagnosis, and anti-SARS-CoV-2-spike IgA as a biomarker for disease severity stratification. MMDA represents a more accurate method for the diagnosis and disease severity stratification of the ongoing COVID-19 pandemic, as well as for biomarker discovery of other diseases.

6.
Hypertens Res ; 45(5): 856-865, 2022 May.
Article in English | MEDLINE | ID: covidwho-1641956

ABSTRACT

The global coronavirus disease 2019 (COVID-19) pandemic has led to a health crisis. It remains unclear how anxiety affects blood pressure (BP) and cardiovascular risk among older patients with hypertension. In this study, we extracted longitudinal data on home BP monitored via a smartphone-based application in 3724 elderly patients with hypertension from a clinical trial (60-80 years; 240 in Wuhan and 3484 in non-Wuhan areas) to examine changes in morning BP during the COVID-19 outbreak in China. Anxiety was evaluated using Generalized Anxiety Disorder-7 item scores. Changes in morning systolic BP (SBP) were analyzed for five 30-day periods during the pandemic (October 21, 2019 to March 21, 2020), including the pre-epidemic, incubation, developing, outbreak, and plateau periods. Data on cardiovascular events were prospectively collected for one year. A total of 262 individuals (7.0%) reported an increased level of anxiety, and 3462 individuals (93.0%) did not. Patients with anxiety showed higher morning SBP than patients without anxiety, and the between-group differences in SBP change were +1.2 mmHg and +1.7 mmHg during the outbreak and plateau periods (P < 0.05), respectively. The seasonal BP variation in winter among patients with anxiety was suppressed during the pandemic. Anxious patients had higher rates of uncontrolled BP. During the 1-year follow-up period, patients with anxiety had an increased risk of cardiovascular events with a hazard ratio of 2.47 (95% confidence interval, 1.10-5.58; P = 0.03). In summary, COVID-19-related anxiety was associated with a short-term increase in morning SBP among older patients and led to a greater risk of cardiovascular events. (ClinicalTrials. gov number, NCT03015311).


Subject(s)
COVID-19 , Hypertension , Aged , Aged, 80 and over , Anxiety/epidemiology , Anxiety Disorders/epidemiology , Blood Pressure/physiology , Blood Pressure Monitoring, Ambulatory , Humans , Hypertension/complications , Hypertension/epidemiology , Middle Aged , Pandemics
7.
Adv Sci (Weinh) ; 9(7): e2104192, 2022 03.
Article in English | MEDLINE | ID: covidwho-1589262

ABSTRACT

Coronavirus disease 2019 (COVID-19) patients with impact on skin and hair loss are reported. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is detected in the skin of some patients; however, the detailed pathological features of skin tissues from patients infected with SARS-CoV-2 at a molecular level are limited. Especially, the ability of SARS-CoV-2 to infect skin cells and impact their function is not well understood. A proteome map of COVID-19 skin is established here and the susceptibility of human-induced pluripotent stem cell (hiPSC)-derived skin organoids with hair follicles and nervous system is investigated, to SARS-CoV-2 infection. It is shown that KRT17+ hair follicles can be infected by SARS-CoV-2 and are associated with the impaired development of hair follicles and epidermis. Different types of nervous system cells are also found to be infected, which can lead to neuron death. Findings from the present work provide evidence for the association between COVID-19 and hair loss. hiPSC-derived skin organoids are also presented as an experimental model which can be used to investigate the susceptibility of skin cells to SARS-CoV-2 infection and can help identify various pathological mechanisms and drug screening strategies.


Subject(s)
COVID-19/physiopathology , Induced Pluripotent Stem Cells/cytology , Models, Biological , Organoids/cytology , Skin/cytology , COVID-19/virology , Hair Follicle/virology , Humans , Nervous System/virology , Proteomics , SARS-CoV-2/isolation & purification
8.
Cell Discov ; 6(1): 84, 2020 Nov 13.
Article in English | MEDLINE | ID: covidwho-1387260
12.
Cell Discov ; 7(1): 57, 2021 Jul 27.
Article in English | MEDLINE | ID: covidwho-1328842

ABSTRACT

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to threaten public health worldwide, the development of effective interventions is urgently needed. Neutralizing antibodies (nAbs) have great potential for the prevention and treatment of SARS-CoV-2 infection. In this study, ten nAbs were isolated from two phage-display immune libraries constructed from the pooled PBMCs of eight COVID-19 convalescent patients. Eight of them, consisting of heavy chains encoded by the immunoglobulin heavy-chain gene-variable region (IGHV)3-66 or IGHV3-53 genes, recognized the same epitope on the receptor-binding domain (RBD), while the remaining two bound to different epitopes. Among the ten antibodies, 2B11 exhibited the highest affinity and neutralization potency against the original wild-type (WT) SARS-CoV-2 virus (KD = 4.76 nM for the S1 protein, IC50 = 6 ng/mL for pseudoviruses, and IC50 = 1 ng/mL for authentic viruses), and potent neutralizing ability against B.1.1.7 pseudoviruses. Furthermore, 1E10, targeting a distinct epitope on RBD, exhibited different neutralization efficiency against WT SARS-CoV-2 and its variants B.1.1.7, B.1.351, and P.1. The crystal structure of the 2B11-RBD complexes revealed that the epitope of 2B11 highly overlaps with the ACE2-binding site. The in vivo experiment of 2B11 using AdV5-hACE2-transduced mice showed encouraging therapeutic and prophylactic efficacy against SARS-CoV-2. Taken together, our results suggest that the highly potent SARS-CoV-2-neutralizing antibody, 2B11, could be used against the WT SARS-CoV-2 and B.1.1.7 variant, or in combination with a different epitope-targeted neutralizing antibody, such as 1E10, against SARS-CoV-2 variants.

13.
Circ Cardiovasc Qual Outcomes ; 14(5): e007098, 2021 05.
Article in English | MEDLINE | ID: covidwho-1232381

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has impacted clinical care worldwide. Evidence of how this health crisis affected common conditions like blood pressure (BP) control is uncertain. METHODS: We used longitudinal BP data from an ongoing randomized clinical trial to examine variations in home BP monitored via a smartphone-based application (app) in a total of 7394 elderly patients with hypertension aged 60 to 80 years stratified by their location in Wuhan (n=283) compared with other provinces of China (n=7111). Change in morning systolic BP (SBP) was analyzed for 5 30-day phases during the pandemic, including preepidemic (October 21 to November 20, 2019), incubation (November 21 to December 20, 2019), developing (December 21, 2019 to January 20, 2020), outbreak (January 21 to February 20, 2020), and plateau (February 21 to March 21, 2020). RESULTS: Compared with non-Wuhan areas of China, average morning SBP (adjusted for age, sex, body mass index) in Wuhan patients was significantly higher during the epidemic growth phases, which returned to normal at the plateau. Between-group differences in ΔSBP were +2.5, +3.0, and +2.1 mm Hg at the incubation, developing, and outbreak phases of COVID-19 (P<0.001), respectively. Sensitivity analysis showed a similar trend in trajectory pattern of SBP in both the intensive and standard BP control groups of the trial. Patients in Wuhan also had an increased regimen change in antihypertensive drugs during the outbreak compared with non-Wuhan patients. Expectedly, Wuhan patients were more likely to check their BP via the app, while doctors were less likely to monitor the app for BP control during the pandemic. CONCLUSIONS: Our data demonstrate that the COVID-19 pandemic was associated with a short-term increase in morning SBP among elderly patients with hypertension in Wuhan but not other parts of China. Further study will be needed to understand if these findings extended to other parts of the world substantially affected by the virus. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT03015311.


Subject(s)
Blood Pressure Determination , COVID-19/epidemiology , Hypertension/diagnosis , Hypertension/physiopathology , Smartphone , Aged , Aged, 80 and over , Antihypertensive Agents/therapeutic use , China , Female , Humans , Hypertension/therapy , Longitudinal Studies , Male , Middle Aged , Self Care
14.
PLoS Biol ; 19(5): e3001209, 2021 05.
Article in English | MEDLINE | ID: covidwho-1219261

ABSTRACT

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) threatens global public health and economy unprecedentedly, requiring accelerating development of prophylactic and therapeutic interventions. Molecular understanding of neutralizing antibodies (NAbs) would greatly help advance the development of monoclonal antibody (mAb) therapy, as well as the design of next generation recombinant vaccines. Here, we applied H2L2 transgenic mice encoding the human immunoglobulin variable regions, together with a state-of-the-art antibody discovery platform to immunize and isolate NAbs. From a large panel of isolated antibodies, 25 antibodies showed potent neutralizing activities at sub-nanomolar levels by engaging the spike receptor-binding domain (RBD). Importantly, one human NAb, termed PR1077, from the H2L2 platform and 2 humanized NAb, including PR953 and PR961, were further characterized and subjected for subsequent structural analysis. High-resolution X-ray crystallography structures unveiled novel epitopes on the receptor-binding motif (RBM) for PR1077 and PR953, which directly compete with human angiotensin-converting enzyme 2 (hACE2) for binding, and a novel non-blocking epitope on the neighboring site near RBM for PR961. Moreover, we further tested the antiviral efficiency of PR1077 in the Ad5-hACE2 transduction mouse model of COVID-19. A single injection provided potent protection against SARS-CoV-2 infection in either prophylactic or treatment groups. Taken together, these results shed light on the development of mAb-related therapeutic interventions for COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/virology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/metabolism , Epitopes/immunology , Humans , Mice , Mice, Transgenic , Neutralization Tests , Pandemics , Protein Binding , Protein Domains , Receptors, Virus/immunology , Spike Glycoprotein, Coronavirus/immunology
15.
Virol Sin ; 35(6): 776-784, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1217480

ABSTRACT

The recent outbreak of novel coronavirus pneumonia (COVID-19) caused by a new coronavirus has posed a great threat to public health. Identifying safe and effective antivirals is of urgent demand to cure the huge number of patients. Virus-encoded proteases are considered potential drug targets. The human immunodeficiency virus protease inhibitors (lopinavir/ritonavir) has been recommended in the global Solidarity Trial in March launched by World Health Organization. However, there is currently no experimental evidence to support or against its clinical use. We evaluated the antiviral efficacy of lopinavir/ritonavir along with other two viral protease inhibitors in vitro, and discussed the possible inhibitory mechanism in silico. The in vitro to in vivo extrapolation was carried out to assess whether lopinavir/ritonavir could be effective in clinical. Among the four tested compounds, lopinavir showed the best inhibitory effect against the novel coronavirus infection. However, further in vitro to in vivo extrapolation of pharmacokinetics suggested that lopinavir/ritonavir could not reach effective concentration under standard dosing regimen [marketed as Kaletra®, contained lopinavir/ritonavir (200 mg/50 mg) tablets, recommended dosage is 400 mg/10 mg (2 tablets) twice daily]. This research concluded that lopinavir/ritonavir should be stopped for clinical use due to the huge gap between in vitro IC50 and free plasma concentration. Nevertheless, the structure-activity relationship analysis of the four inhibitors provided further information for de novel design of future viral protease inhibitors of SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Lopinavir/pharmacology , Ritonavir/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Viral Protease Inhibitors/pharmacology , Animals , Antiviral Agents/chemistry , COVID-19/blood , COVID-19/virology , Cell Line , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Combinations , Humans , Lopinavir/blood , Male , Molecular Docking Simulation , Ritonavir/blood , Vero Cells , Viral Protease Inhibitors/chemistry
16.
Andrology ; 9(4): 1027-1037, 2021 07.
Article in English | MEDLINE | ID: covidwho-1066607

ABSTRACT

BACKGROUND: The testes are suspected target organs of SARS-CoV-2. However, the results of studies on the effect of COVID-19 on male reproduction are controversial. OBJECTIVE: To summarize current research on the effects of COVID-19 on male reproduction. METHODS: A systematic review of English literature was performed using PubMed and Ovid Embase up to 18 August 2020. Research articles on the presence of SARS-CoV-2 in semen, the effects of the virus on semen parameters and any pathological changes in the testes were evaluated. RESULTS: Fourteen studies were included in this review. Six of 176 survivors (3.4%) and 1 of 13 decedents (7.7%) in 2 of 12 studies were positive for viral RNA in semen and testicular tissue, respectively. After stratification of patient groups, we found that the virus was detected in the relatively early stage of infection, 6-16 days after disease onset, in semen from survivors. Two of 3 studies reported that some participants had substandard semen quality after COVID-19, and 1 study found that COVID-19 may impair semen quality in a severity-related manner. Pathological analyses showed that injuries to the seminiferous tubule occurred in all decedents (N = 11). Another study found that orchitic and testis fibrin microthrombi occurred in patients with fatal disease (100%, N = 2). Scrotal discomfort of orchiepididymitis or spermatic cord inflammation has also been reported in COVID-19 patients. CONCLUSION: Current studies suggest that semen is rarely considered a carrier of SARS-CoV-2 genetic material during the infection period but not in the semen of recovered patients. Fatal COVID-19 may cause testicular structure damage without the presence of virus.


Subject(s)
COVID-19/physiopathology , Reproduction , Semen/virology , COVID-19/pathology , COVID-19/virology , Humans , Male , Semen Analysis , Seminiferous Tubules/pathology , Seminiferous Tubules/virology , Testis/pathology , Testis/virology
17.
Nano Today ; 36: 101037, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-939172

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic represents a severe global health threat. Selenium (Se), as one of the essential trace elements in human body, is well known for its antioxidant and immunity-boosting capabilities that induce a strong antiviral effect. In response to the global pandemic, we highlight here the current status of Se in combating different viruses, as well as the potential application of nano-selenium (nanoSe) in combating COVID-19.

18.
Front Pharmacol ; 11: 571156, 2020.
Article in English | MEDLINE | ID: covidwho-804392

ABSTRACT

BACKGROUND: COVID-19 is a type of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that was identified in December 2019. Corticosteroid therapy was empirically used for clinical treatment in the early stage of the disease outbreak; however, data regarding its efficacy and safety are controversial. The aim of this study was to evaluate the efficacy and safety of corticosteroid therapy in patients with COVID-19. METHODS: The PubMed, Cochrane Library, EMBASE, Web of Science, China National Knowledge Infrastructure (CNKI), Wanfang, and China Science and Technology Journal (VIP) databases were searched for studies. Data on clinical improvement, mortality, virus clearance time, adverse events (AEs), utilization of mechanical ventilation, length of intensive care unit (ICU) hospitalization, and hospital stay were extracted by two authors independently. Study quality was assessed by the Newcastle Ottawa Scale (cohort studies). The pooled data were meta-analyzed using a random effects model, and the quality of evidence was rated using the GRADE approach. RESULTS: Eleven cohort studies (corticosteroid group vs control group), two retrospective cohort studies (without control group), and seven case studies were identified. A total of 2840 patients were included. Compared with the control treatments, corticosteroid therapy was associated with clinical recovery (RR = 1.30, 95% CI [0.98, 1.72]) and a significantly shortened length of ICU hospitalization (RR = -6.50; 95% CI [-7.63 to -5.37]), but it did not affect the mortality ((RR = 1.59; 95% CI [0.69-3.66], I2 = 93.5%), utilization of mechanical ventilation (RR = 0.35; 95% CI [0.10, 1.18]), duration of symptoms (WMD = 1.69; 95% CI [-0.24 to 3.62]) or virus clearance time (RR = 1.01; 95% CI [-0.91 to 2.92], I2 = 57%) in COVID-19 patients. Treatment with corticosteroids in patients with COVID-19 may cause mild adverse outcomes. The quality of evidence was low or very low for all outcomes. CONCLUSION: The findings of our study indicate that corticosteroid therapy is not highly effective, but it appears to improve prognosis and promote clinical recovery in patients with severe COVID-19.

19.
ACS Infect Dis ; 6(9): 2524-2531, 2020 09 11.
Article in English | MEDLINE | ID: covidwho-695395

ABSTRACT

The discovery of novel drug candidates with anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) potential is critical for the control of the global COVID-19 pandemic. Artemisinin, an old antimalarial drug derived from Chinese herbs, has saved millions of lives. Artemisinins are a cluster of artemisinin-related drugs developed for the treatment of malaria and have been reported to have multiple pharmacological activities, including anticancer, antiviral, and immune modulation. Considering the reported broad-spectrum antiviral potential of artemisinins, researchers are interested in whether they could be used to combat COVID-19. We systematically evaluated the anti-SARS-CoV-2 activities of nine artemisinin-related compounds in vitro and carried out a time-of-drug-addition assay to explore their antiviral mode of action. Finally, a pharmacokinetic prediction model was established to predict the therapeutic potential of selected compounds against COVID-19. Arteannuin B showed the highest anti-SARS-CoV-2 potential with an EC50 of 10.28 ± 1.12 µM. Artesunate and dihydroartemisinin showed similar EC50 values of 12.98 ± 5.30 µM and 13.31 ± 1.24 µM, respectively, which could be clinically achieved in plasma after intravenous administration. Interestingly, although an EC50 of 23.17 ± 3.22 µM was not prominent among the tested compounds, lumefantrine showed therapeutic promise due to high plasma and lung drug concentrations after multiple dosing. Further mode of action analysis revealed that arteannuin B and lumefantrine acted at the post-entry step of SARS-CoV-2 infection. This research highlights the anti-SARS-CoV-2 potential of artemisinins and provides leading candidates for anti-SARS-CoV-2 drug research and development.


Subject(s)
Antiviral Agents/pharmacology , Artemisinins/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Animals , Antimalarials/pharmacology , COVID-19 , Chlorocebus aethiops , Drug Discovery , Drug Repositioning , Drugs, Chinese Herbal/pharmacology , Pandemics , SARS-CoV-2 , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL