Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Build Environ ; 220: 109160, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1850735

ABSTRACT

The influencing mechanism of droplet transmissions inside crowded and poorly ventilated buses on infection risks of respiratory diseases is still unclear. Based on experiments of one-infecting-seven COVID-19 outbreak with an index patient at bus rear, we conducted CFD simulations to investigate integrated effects of initial droplet diameters(tracer gas, 5 µm, 50 µm and 100 µm), natural air change rates per hour(ACH = 0.62, 2.27 and 5.66 h-1 related to bus speeds) and relative humidity(RH = 35% and 95%) on pathogen-laden droplet dispersion and infection risks. Outdoor pressure difference around bus surfaces introduces natural ventilation airflow entering from bus-rear skylight and leaving from the front one. When ACH = 0.62 h-1(idling state), the 30-min-exposure infection risk(TIR) of tracer gas is 15.3%(bus rear) - 11.1%(bus front), and decreases to 3.1%(bus rear)-1.3%(bus front) under ACH = 5.66 h-1(high bus speed).The TIR of large droplets(i.e., 100 µm/50 µm) is almost independent of ACH, with a peak value(∼3.1%) near the index patient, because over 99.5%/97.0% of droplets deposit locally due to gravity. Moreover, 5 µm droplets can disperse further with the increasing ventilation. However, TIR for 5 µm droplets at ACH = 5.66 h-1 stays relatively small for rear passengers(maximum 0.4%), and is even smaller in the bus middle and front(<0.1%). This study verifies that differing from general rooms, most 5 µm droplets deposit on the route through the long-and-narrow bus space with large-area surfaces(L∼11.4 m). Therefore, tracer gas can only simulate fine droplet with little deposition but cannot replace 5-100 µm droplet dispersion in coach buses.

2.
Building and environment ; 2022.
Article in English | EuropePMC | ID: covidwho-1837424

ABSTRACT

Leading health authorities have suggested short-range airborne transmission as a major route of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, there is no simple method to assess the short-range airborne infection risk or identify its governing parameters. We proposed a short-range airborne infection risk assessment model based on the continuum model and two-stage jet model. The effects of ventilation, physical distance and activity intensity on the short-range airborne exposure were studied systematically. The results suggested that increasing physical distance and ventilation reduced short-range airborne exposure and infection risk. However, a diminishing return phenomenon was observed when the ventilation rate or physical distance was beyond a certain threshold. When the infectious quantum concentration was less than 1 quantum/L at the mouth, our newly defined threshold distance and threshold ventilation rate were independent of quantum concentration. We estimated threshold distances of 0.59, 1.1, 1.7 and 2.6 m for sedentary/passive, light, moderate and intense activities, respectively. At these distances, the threshold ventilation was estimated to be 8, 20, 43, and 83 L/s per person, respectively. The findings show that both physical distancing and adequate ventilation are essential for minimising infection risk, especially in high-intensity activity or densely populated spaces. Graphical Image 1

3.
Build Environ ; 218: 109137, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1803632

ABSTRACT

A COVID-19 outbreak occurred in May 2020 in a public housing building in Hong Kong - Luk Chuen House, located in Lek Yuen Estate. The horizontal cluster linked to the index case' flat (flat 812) remains to be explained. Computational fluid dynamics simulations were conducted to obtain the wind-pressure coefficients of each external opening on the eighth floor of the building. The data were then used in a multi-zone airflow model to estimate the airflow rate and aerosol concentration in the flats and corridors on that floor. Apart from flat 812 and corridors, the virus-laden aerosol concentrations in flats 811, 813, 815, 817 and 819 (opposite to flat 812, across the corridor) were the highest on the eighth floor. When the doors of flats 813 and 817 were opened by 20%, the hourly-averaged aerosol concentrations in these two flats were at least four times as high as those in flats 811, 815 and 819 during the index case's home hours or the suspected exposure period of secondary cases. Thus, the flats across the corridor that were immediately downstream from flat 812 were at the highest exposure risk under a prevailing easterly wind, especially when their doors or windows that connected to the corridor were open. Given that the floorplan and dimension of Luk Chuen House are similar to those of many hotels, our findings provide a probable explanation for COVID-19 outbreaks in quarantine hotels. Positive pressure and sufficient ventilation in the corridor would help to minimise such cross-corridor infections.

5.
Indoor Air ; 31(4):921-925, 2021.
Article in English | GIM | ID: covidwho-1723219

ABSTRACT

Ambient fine particulate matter (PM2.5), as one of the predominant air pollutants, has achieved effective control in recent years in China. Whether the use of indoor air purifiers is still necessary needs further exploration. A randomized crossover trial was conducted in 54 healthy students in Beijing, China. Participants were randomized assigned to the use of real or sham high-efficiency particulate air filter (HEPA) for a week and changed the status after a washout period. Health measurements of cardiorespiratory biomarkers were performed at the end of each period. Linear mixed-effects models were used to evaluate the association between PM2.5 exposure and cardiorespiratory biomarkers. Compared with sham air purification, average diastolic blood pressure (DBP), fractional exhaled nitric oxide (FeNO), and 8-isoprostane (8-isoPGF2-a) levels decreased significantly in the real purification. The effects of indoor air purification on lung function indicators including forced expiratory volume in one second (FEV1), peak expiratory flow (PEF), and forced expiratory flow between the 25th and 75th percentile of forced vital capacity (FEF25%-75%) were also significant. Our findings showed a protective effect of indoor HEPA air purifiers on cardiorespiratory health of young healthy adults reflected by the decreased blood pressure, respiratory inflammation, and systematic oxidative stress and improved lung function.

6.
Interface Focus ; 12(2): 20210079, 2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1713825

ABSTRACT

Responses to the early (February-July 2020) COVID-19 pandemic varied widely, globally. Reasons for this are multiple but likely relate to the healthcare and financial resources then available, and the degree of trust in, and economic support provided by, national governments. Cultural factors also affected how different populations reacted to the various pandemic restrictions, like masking, social distancing and self-isolation or self-quarantine. The degree of compliance with these measures depended on how much individuals valued their needs and liberties over those of their society. Thus, several themes may be relevant when comparing pandemic responses across different regions. East and Southeast Asian populations tended to be more collectivist and self-sacrificing, responding quickly to early signs of the pandemic and readily complied with most restrictions to control its spread. Australasian, Eastern European, Scandinavian, some Middle Eastern, African and South American countries also responded promptly by imposing restrictions of varying severity, due to concerns for their wider society, including for some, the fragility of their healthcare systems. Western European and North American countries, with well-resourced healthcare systems, initially reacted more slowly, partly in an effort to maintain their economies but also to delay imposing pandemic restrictions that limited the personal freedoms of their citizens.

7.
Interface Focus ; 12(2): 20210063, 2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1713822

ABSTRACT

Poor housing conditions are known to be associated with infectious diseases such as high Coronavirus disease 2019 (COVID-19) incidences. Transmission causes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in poor housing conditions can be complex. An understanding of the exact mechanism of transmission can help to pinpoint contributing environmental issues. Here, we investigated a Hong Kong COVID-19 outbreak in early 2021 in four traditional Tong Lau houses with subdivided units. There are more than 80 subdivided units of less than 20 m2 floor area each on average. With a total of 34 confirmed COVID-19 cases, the outbreak had an attack rate of 25.4%, being one of the highest attack rates observed in Hong Kong, and ranked among the highest attack rates in reported outbreaks internationally. Tracer gas leakage and decay measurements were performed in the drainage system and in the subdivided units to determine the transport of infectious aerosols by the owner-modified sophisticated wastewater drainage pipe networks and the poor ventilation conditions in some subdivided units. The results show that the outbreak was probably due to multiple transmission routes, i.e. by the drainage pipe spread of stack aerosols, which is enhanced by poor ventilation in the subdivided units.

8.
J Hazard Mater ; 430: 128504, 2022 May 15.
Article in English | MEDLINE | ID: covidwho-1693278

ABSTRACT

Airborne transmission of SARS-CoV-2 has been increasingly recognized in the outbreak of COVID-19, especially with the Omicron variant. We investigated an outbreak due to Omicron variant in a restaurant. Besides epidemiological and phylogenetic analyses, the secondary attack rates of customers of restaurant-related COVID-19 outbreak before (Outbreak R1) and after enhancement of indoor air dilution (Outbreak R2) were compared. On 27th December 2021, an index case stayed in restaurant R2 for 98 min. Except for 1 sitting in the same table, six other secondary cases sat in 3 corners at 3 different zones, which were served by different staff. The median exposure time was 34 min (range: 19-98 min). All 7 secondary cases were phylogenetically related to the index. Smoke test demonstrated that the airflow direction may explain the distribution of secondary cases. Compared with an earlier COVID-19 outbreak in another restaurant R1 (19th February 2021), which occurred prior to the mandatory enhancement of indoor air dilution, the secondary attack rate among customers in R2 was significantly lower than that in R1 (3.4%, 7/207 vs 28.9%, 22/76, p<0.001). Enhancement of indoor air dilution through ventilation and installation of air purifier could minimize the risk of SARS-CoV-2 transmission in the restaurants.

9.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-315123

ABSTRACT

There are few studies describing the presence of respiratory viruses in respiratory droplets and aerosols in the exhaled breath of infected persons, and the efficacy of facemasks as a source control to prevent respiratory virus transmission. Here, we recruited children and adults with acute respiratory illness and collected respiratory droplets and aerosols, with and without surgical facemasks. We identified human coronaviruses, influenza virus and rhinovirus from both respiratory droplets and aerosols. Surgical face masks reduced detection of coronavirus RNA in both respiratory droplets and aerosols, but only respiratory droplets and not aerosols for influenza virus RNA. Our results provide mechanistic evidence that surgical facemasks could prevent transmission of human coronavirus and influenza virus infections if worn by symptomatic individuals.Authors Donald K Milton and Benjamin J Cowling are joint senior authors.

10.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313424

ABSTRACT

The question of whether SARS-CoV-2 is transmitted by droplets or aerosols has been very controversial. We sought to explain this controversy through a historical analysis of transmission research in other diseases. For most of human history, many diseases were thought to transmit through the air, often over long distances and in a phantasmagorical way, and often in error (e.g. malaria, cholera). Building on the germ theory of disease developed in the mid 19th century and on the demise of miasma theory, prominent public health official Charles Chapin in 1910 urged the public health community to focus on contact and droplet infection. However, he introduced a major error in the process: that ease of infection in close proximity is associated exclusively with large “sprayborne” droplets that fall to the ground quickly, and he deemed airborne transmission as very unlikely. This new paradigm became dominant, leading to systematic errors in the interpretation of research evidence on transmission. For the next five decades, no disease was accepted by the general medical and infection control communities as airborne, until tuberculosis (which had been misclassified as droplet) in 1962. Chapin’s paradigm remained dominant and only a few diseases were widely accepted as transmitted by aerosols before COVID-19: those that were clearly transmitted over long distances or time scales. Resistance to the idea of airborne spread of a respiratory infection is not new. In fact, it has occurred repeatedly over much of the last century and greatly hampered understanding of how diseases transmit.

11.
J Hazard Mater ; 430: 128475, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1676810

ABSTRACT

Vertical transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) along a vertical column of flats has been documented in several outbreaks of coronavirus disease 2019 (COVID-19) in Guangdong and Hong Kong. We describe an outbreak in Luk Chuen House, involving two vertical columns of flats associated with an unusually connected two-stack drainage system, in which nine individuals from seven households were infected. The index case resided in Flat 812 (8th floor, Unit 12), two flats (813, 817) on its opposite side reported one case each (i.e., a horizontal sub-cluster). All other flats with infected residents were vertically associated, forming a vertical sub-cluster. We injected tracer gas (SF6) into drainage stacks via toilet or balcony of Flat 812, monitored gas concentrations in roof vent, toilet, façade, and living room in four of the seven flats with infected residents and four flats with no infected residents. The measured gas concentration distributions agreed with the observed distribution of affected flats. Aerosols leaking into drainage stacks may generate the vertical sub-cluster, whereas airflow across the corridor probably caused the horizontal sub-cluster. Sequencing and phylogenetic analyses also revealed a common point-source. The findings provided additional evidence of probable roles of drainage systems in SARS-CoV-2 transmission.


Subject(s)
COVID-19 , Aerosols , COVID-19/epidemiology , Disease Outbreaks , Housing , Humans , Phylogeny , SARS-CoV-2
12.
Indoor Air ; 32(1): e12937, 2022 01.
Article in English | MEDLINE | ID: covidwho-1662270

ABSTRACT

The potential role of aerosol transmission for seasonal respiratory viruses has been dramatically highlighted during the ongoing COVID-19 pandemic. It is now evident that short-range (conversational) and long-range aerosol transmission plays at least some part in how all these respiratory viruses are transmitted between people. This article highlights and discusses various studies that form the basis for this hypothesis.


Subject(s)
Aerosols , Air Microbiology , Air Pollution, Indoor , COVID-19 , Viruses , COVID-19/transmission , Humans , Pandemics , SARS-CoV-2
13.
Environ Res ; 205: 112451, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1654404

ABSTRACT

Measurements of CO2 and counting of occupants were carried out in 37 public bus trips during commuting rush hours in Barcelona (NE Spain) with the aim of evaluating parameters governing ventilation inside the vehicles and proposing actions to improve it. The results show that CO2 concentrations (1039 and 934 ± 386 ppm, as average and median, during rush hours but with average reduced occupancy due to the fair to be infected by SARS-CoV-2 during the measurement period, and measured in the middle of the busses) are in the lower range of values recorded in the literature for public buses, however an improvement in ventilation is required in a significant proportion of the journeys. Thus, we found better ventilation in the older Euro 3+ (retrofitted with filter traps and selective catalytic reduction) and Euro 5 buses (average 918 ± 257 ppm) than in the hermetically closed new Euro 6 ones (1111 ± 432 ppm). The opening of the windows in the older buses yielded higher ventilation rates (778 ± 432 ppm). The opening of all doors at all stops increases the ventilation by causing a fall in concentrations of 200-350 ppm below inter-stop concentrations, with this effect typically lasting 40-50 s in the hermetically closed new Euro 6 hybrid buses. Based on these results a number of recommendations are offered in order to improve ventilation, including measurement of CO2 and occupancy, and installation of ventilation fans on the top of the hermetically closed new buses, introducing outdoor air when a given concentration threshold is exceeded. In these cases, a CO2 sensor installed in the outdoor air intake is also recommended to take into account external CO2 contributions.


Subject(s)
Air Pollution, Indoor , COVID-19 , Air Pollution, Indoor/analysis , Carbon Dioxide/analysis , Humans , Motor Vehicles , SARS-CoV-2 , Transportation , Ventilation
14.
Frontiers in public health ; 9, 2021.
Article in English | EuropePMC | ID: covidwho-1602671

ABSTRACT

Personal protective behaviors of healthcare workers (HCWs) and dynamic changes in them are known to play a major role in the hospital transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, 1,499 HCWs in Chinese hospitals completed an online survey about their knowledge on SARS-CoV-2 transmission and their personal protective behaviors before and after coronavirus disease 2019 (COVID-19) vaccination. Of all the respondents, 89% were vaccinated at the time of the survey and 96% believed that the vaccine was effective or highly effective. Further, 88% of the vaccinated HCWs expressed that they would get revaccinated if the vaccination failed. Compared with HCWs with a lower education level, those with a higher education level had less fear of being infected with SARS-CoV-2 and reported a lower negative impact of the pandemic on how they treated patients. Physicians and nurses were willing to believe that short-range airborne and long-range fomite are possible transmission routes. HCWs with a higher education level had a better knowledge of COVID-19 but worse personal protective behaviors. The fact that HCWs with a longer work experience had worse personal protective behaviors showed that HCWs gradually relax their personal protective behaviors over time. Moreover, vaccination reduced the negative effects of the COVID-19 pandemic on how the HCWs treated patients. Importantly, the survey revealed that after vaccination, HCWs in China did not relax their personal protective behaviors, and it may bring a low potential risk for following waves of variant virus (e.g., delta).

16.
J Hazard Mater ; 425: 128051, 2022 03 05.
Article in English | MEDLINE | ID: covidwho-1561920

ABSTRACT

The number of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to increase worldwide, but despite extensive research, there remains significant uncertainty about the predominant routes of SARS-CoV-2 transmission. We conducted a mechanistic modeling and calculated the exposure dose and infection risk of each passenger in a two-bus COVID-19 outbreak in Hunan province, China. This outbreak originated from a single pre-symptomatic index case. Some human behavioral data related to exposure including boarding and alighting time of some passengers and seating position and mask wearing of all passengers were obtained from the available closed-circuit television images/clips and/or questionnaire survey. Least-squares fitting was performed to explore the effect of effective viral load on transmission risk, and the most likely quanta generation rate was also estimated. This study reveals the leading role of airborne SARS-CoV-2 transmission and negligible role of fomite transmission in a poorly ventilated indoor environment, highlighting the need for more targeted interventions in such environments. The quanta generation rate of the index case differed by a factor of 1.8 on the two buses and transmission occurred in the afternoon of the same day, indicating a time-varying effective viral load within a short period of five hours.


Subject(s)
Air Microbiology , COVID-19 , Fomites/virology , Motor Vehicles , SARS-CoV-2 , COVID-19/transmission , Disease Outbreaks , Humans
17.
Clin Infect Dis ; 73(11): e4305-e4311, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1560822

ABSTRACT

BACKGROUND: Nonpharmaceutical interventions (NPIs) against coronavirus disease 2019 (COVID-19) are vital to reducing transmission risks. However, the relative efficiency of social distancing against COVID-19 remains controversial, since social distancing and isolation/quarantine were implemented almost at the same time in China. METHODS: In this study, surveillance data of COVID-19 and seasonal influenza in 2018-2020 were used to quantify the relative efficiency of NPIs against COVID-19 in China, since isolation/quarantine was not used for the influenza epidemics. Given that the relative age-dependent susceptibility to influenza and COVID-19 may vary, an age-structured susceptible/infected/recovered model was built to explore the efficiency of social distancing against COVID-19 under different population susceptibility scenarios. RESULTS: The mean effective reproductive number, Rt, of COVID-19 before NPIs was 2.12 (95% confidence interval [CI], 2.02-2.21). By 11 March 2020, the overall reduction in Rt of COVID-19 was 66.1% (95% CI, 60.1-71.2%). In the epidemiological year 2019-20, influenza transmissibility was reduced by 34.6% (95% CI, 31.3-38.2%) compared with transmissibility in epidemiological year 2018-19. Under the observed contact pattern changes in China, social distancing had similar efficiency against COVID-19 in 3 different scenarios. By assuming the same efficiency of social distancing against seasonal influenza and COVID-19 transmission, isolation/quarantine and social distancing could lead to 48.1% (95% CI, 35.4-58.1%) and 34.6% (95% CI, 31.3-38.2%) reductions of the transmissibility of COVID-19, respectively. CONCLUSIONS: Though isolation/quarantine is more effective than social distancing, given that the typical basic reproductive number of COVID-19 is 2-3, isolation/quarantine alone could not contain the COVID-19 pandemic effectively in China.


Subject(s)
COVID-19 , Influenza, Human , China/epidemiology , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics , Physical Distancing , Quarantine , SARS-CoV-2
18.
Indoor Air ; 32(1): e12946, 2022 01.
Article in English | MEDLINE | ID: covidwho-1494731

ABSTRACT

To explain the observed phenomenon that most SARS-CoV-2 transmission occurs indoors whereas its outdoor transmission is rare, a simple macroscopic aerosol balance model is developed to link short- and long-range airborne transmission. The model considers the involvement of exhaled droplets with initial diameter ≤50 µm in the short-range airborne route, whereas only a fraction of these droplets with an initial diameter within 15 µm or equivalently a final diameter within 5 µm considered in the long-range airborne route. One surprising finding is that the room ventilation rate significantly affects the short-range airborne route, in contrast to traditional belief. When the ventilation rate in a room is insufficient, the airborne infection risks due to both short- and long-range transmission are high. A ventilation rate of 10 L/s per person provides a similar concentration vs distance decay profile to that in outdoor settings, which provides additional justification for the widely adopted ventilation standard of 10 L/s per person. The newly obtained data do not support the basic assumption in the existing ventilation standard ASHRAE 62.1 (2019) that the required people outdoor air rate is constant if the standard is used directly for respiratory infection control. Instead, it is necessary to increase the ventilation rate when the physical distance between people is less than approximately 2 m.


Subject(s)
Air Microbiology , Air Pollution, Indoor , COVID-19 , Respiratory Tract Infections , Ventilation , Aerosols , COVID-19/transmission , Humans , Respiratory Tract Infections/transmission , SARS-CoV-2
20.
Build Environ ; 207: 108414, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1446479

ABSTRACT

Uncertainty remains on the threshold of ventilation rate in airborne transmission of SARS-CoV-2. We analyzed a COVID-19 outbreak in January 2020 in Hunan Province, China, involving an infected 24-year-old man, Mr. X, taking two subsequent buses, B1 and B2, in the same afternoon. We investigated the possibility of airborne transmission and the ventilation conditions for its occurrence. The ventilation rates on the buses were measured using a tracer-concentration decay method with the original driver on the original route. We measured and calculated the spread of the exhaled virus-laden droplet tracer from the suspected index case. Ten additional passengers were found to be infected, with seven of them (including one asymptomatic) on B1 and two on B2 when Mr. X was present, and one passenger infected on the subsequent B1 trip. B1 and B2 had time-averaged ventilation rates of approximately 1.7 and 3.2 L/s per person, respectively. The difference in ventilation rates and exposure time could explain why B1 had a higher attack rate than B2. Airborne transmission due to poor ventilation below 3.2 L/s played a role in this two-bus outbreak of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL