Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Virus Res ; 322: 198954, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2050063

ABSTRACT

Porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhoea virus (PEDV) are the main porcine enteric coronaviruses that cause severe diarrhoea in piglets, posing huge threat to the swine industry. Our previous study verified that the co-infection of PDCoV and PEDV is common in natural swine infections and obviously enhances the disease severity in piglets. However, the effects of co-infection of PDCoV and PEDV on intestinal microbial community are unknown. In current study, the microbial composition and diversity in the colon of piglets were analyzed. Our results showed that both of PDCoV and PEDV were mainly distributed in the small intestines and caused severe damage of ileum but not colon in the co-inoculated piglets. Furthermore, we observed that PDCoV and PEDV co-infection alters the gut microbiota composition at the phylum, family and genus levels. The abundance of Mitsuokella and Collinsella at genus level were significantly increased in PDCoV-PEDV co-infection piglets. Spearman's correlation analysis further suggested that there existed strong positive correlation between Mitsuokella and TNF-α, IL-6 and IL-8 secretion, these two factors may together aggravating the small intestine pathological lesions. These results proved there existed obvious correlation between the disease severity caused by PDCoV-PEDV co-infection and intestinal microbial community.


Subject(s)
Coinfection , Coronavirus Infections , Gastrointestinal Microbiome , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Coinfection/veterinary
2.
Macromol Biosci ; 21(1): e2000252, 2021 01.
Article in English | MEDLINE | ID: covidwho-740854

ABSTRACT

Bacterial infectious diseases and bacterial-infected environments have been threatening the health of human beings all over the world. In view of the increased bacteria resistance caused by overuse or improper use of antibiotics, antibacterial biomaterials are developed as the substitutes for antibiotics in some cases. Among them, antibacterial hydrogels are attracting more and more attention due to easy preparation process and diversity of structures by changing their chemical cross-linkers via covalent bonds or noncovalent physical interactions, which can endow them with various specific functions such as high toughness and stretchability, injectability, self-healing, tissue adhesiveness and rapid hemostasis, easy loading and controlled drug release, superior biocompatibility and antioxidation as well as good conductivity. In this review, the recent progress of antibacterial hydrogel including the fabrication methodologies, interior structures, performances, antibacterial mechanisms, and applications of various antibacterial hydrogels is summarized. According to the bacteria-killing modes of hydrogels, several representative hydrogels such as silver nanoparticles-based hydrogel, photoresponsive hydrogel including photothermal and photocatalytic, self-bacteria-killing hydrogel such as inherent antibacterial peptides and cationic polymers, and antibiotics-loading hydrogel are focused on. Furthermore, current challenges of antibacterial hydrogels are discussed and future perspectives in this field are also proposed.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Hydrogels/therapeutic use , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Antioxidants/therapeutic use , Bacterial Infections/microbiology , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Delayed-Action Preparations/therapeutic use , Humans , Hydrogels/chemistry , Silver/chemistry , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL