Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335494

ABSTRACT

Recent emergence of SARS-CoV-2 Omicron sublineages BA.2.12.1, BA.2.13, BA.4 and BA.5 all contain L452 mutations and show potential higher transmissibility over BA.2. The new variants’ receptor binding and immune evasion capability require immediate investigation, especially on the role of L452 substitutions. Herein, coupled with structural comparisons, we showed that BA.2 sublineages, including BA.2.12.1 and BA.2.13, exhibit increased ACE2-binding affinities compared to BA.1;while BA.4/BA.5 shows the weakest receptor-binding activity due to F486V and R493Q reversion. Importantly, compared to BA.2, BA.2.12.1 and BA.4/BA.5 exhibit stronger neutralization escape from the plasma of 3-dose vaccinees and, most strikingly, from vaccinated BA.1 convalescents. To delineate the underlying evasion mechanism, we determined the escaping mutation profiles, epitope distribution and Omicron sub-lineage neutralization efficacy of 1640 RBD-directed neutralizing antibodies (NAbs), including 614 isolated from BA.1 convalescents. Interestingly, post-vaccination BA.1 infection mainly recalls wildtype-induced humoral memory and elicits antibodies that neutralize both wild-type and BA.1. These cross-reactive NAbs are significantly enriched on non-ACE2-competing epitopes;and surprisingly, the majority are undermined by R346 and L452 substitutions, namely R346K (BA.1.1), L452M (BA.2.13), L452Q (BA.2.12.1) and L452R (BA.4/BA.5), suggesting that R346K and L452 mutations appeared under the immune pressure of Omicron convalescents. Nevertheless, BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1 but do not respond to wild-type SARS-CoV-2, due to the high susceptibility to N501, N440, K417 and E484. However, these NAbs are largely escaped by BA.2 sublineages and BA.4/BA.5 due to D405N and F486V, exhibiting poor neutralization breadths. As for therapeutic NAbs, LY-CoV1404 (Bamlanivimab) and COV2-2130 (Cilgavimab) can still effectively neutralize BA.2.12.1 and BA.4/BA.5, while the S371F, D405N and R408S mutations carried by BA.2/BA.4/BA.5 sublineages would undermine most broad sarbecovirus NAbs. Together, our results indicate that Omicron can evolve mutations to specifically evade humoral immunity elicited by BA.1 infection. The continuous evolution of Omicron poses great challenges to SARS-CoV-2 herd immunity and suggests that BA.1-derived vaccine boosters may not be ideal for achieving broad-spectrum protection.

2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335258

ABSTRACT

The recently emerged SARS-CoV-2 Omicron sublineages BA.2.12.1, BA.2.13, BA.4 and BA.5 all contain L452 mutations and show potential higher transmissibility over BA.2 1 . The new variants’ receptor binding and immune evasion capability require immediate investigation, especially on the role of L452 substitutions. Herein, coupled with structural comparisons, we show that BA.2 sublineages, including BA.2.12.1 and BA.2.13, exhibit increased ACE2-binding affinities compared to BA.1;while BA.4/BA.5 displays the weakest receptor-binding activity due to F486V and R493Q reversion. Importantly, compared to BA.2, BA.2.12.1 and BA.4/BA.5 exhibit stronger neutralization evasion against the plasma of 3-dose vaccinees and, most strikingly, of vaccinated BA.1 convalescents. To delineate the underlying evasion mechanism, we determined the escaping mutation profiles 2 , epitope distribution 3 and Omicron sublineage neutralization efficacy of 1640 RBD-directed neutralizing antibodies (NAbs), including 614 isolated from BA.1 convalescents. Interestingly, post-vaccination BA.1 infection mainly recalls wildtype (WT) induced humoral memory and elicits antibodies that neutralize both WT and BA.1. These cross-reactive NAbs are significantly enriched on non-ACE2-competing epitopes;and surprisingly, the majority are undermined by R346 and L452 substitutions, namely R346K (BA.1.1), L452M (BA.2.13), L452Q (BA.2.12.1) and L452R (BA.4/BA.5), suggesting that R346K and L452 mutations appeared under the immune pressure induced by Omicron convalescents. Nevertheless, BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1 but do not respond to WT SARS-CoV-2 due to the high susceptibility to N501, N440, K417 and E484. However, these NAbs are largely escaped by BA.2 sublineages and BA.4/BA.5 due to D405N and F486V, exhibiting poor neutralization breadths. As for therapeutic NAbs, LY-CoV1404 (Bebtelovimab 4 ) and COV2-2130 (Cilgavimab 5 ) can still effectively neutralize BA.2.12.1 and BA.4/BA.5, while the S371F, D405N and R408S mutations carried by BA.2/BA.4/BA.5 sublineages would undermine most broad sarbecovirus NAbs. Together, our results indicate that Omicron can evolve mutations to specifically evade humoral immunity elicited by BA.1 infection. The continuous evolution of Omicron poses great challenges to SARS-CoV-2 herd immunity and suggests that BA.1-derived vaccine boosters may not be ideal for achieving broad-spectrum protection.

3.
Research (Wash D C) ; 2022: 9781758, 2022.
Article in English | MEDLINE | ID: covidwho-1699468

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has evolved many variants with stronger infectivity and immune evasion than the original strain, including Alpha, Beta, Gamma, Delta, Epsilon, Kappa, Iota, Lambda, and 21H strains. Amino acid mutations are enriched in the spike protein of SARS-CoV-2, which plays a crucial role in cell infection. However, the impact of these mutations on protein structure and function is unclear. Understanding the pathophysiology and pandemic features of these SARS-CoV-2 variants requires knowledge of the spike protein structures. Here, we obtained the spike protein structures of 10 main globally endemic SARS-CoV-2 strains using AlphaFold2. The clustering analysis based on structural similarity revealed the unique features of the mainly pandemic SARS-CoV-2 Delta variants, indicating that structural clusters can reflect the current characteristics of the epidemic more accurately than those based on the protein sequence. The analysis of the binding affinities of ACE2-RBD, antibody-NTD, and antibody-RBD complexes in the different variants revealed that the recognition of antibodies against S1 NTD and RBD was decreased in the variants, especially the Delta variant compared with the original strain, which may induce the immune evasion of SARS-CoV-2 variants. Furthermore, by virtual screening the ZINC database against a high-accuracy predicted structure of Delta spike protein and experimental validation, we identified multiple compounds that target S1 NTD and RBD, which might contribute towards the development of clinical anti-SARS-CoV-2 medicines. Our findings provided a basic foundation for future in vitro and in vivo investigations that might speed up the development of potential therapies for the SARS-CoV-2 variants.

4.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327486

ABSTRACT

Constantly emerging SARS-CoV-2 variants, such as Omicron BA.1, BA.1.1 and BA.2, pose a severe challenge to COVID-19 control 1–10 . Broad-spectrum antibody therapeutics and vaccines are needed for defending against future SARS-CoV-2 variants and sarbecovirus pandemics 11–14 ;however, we have yet to gain a comprehensive understanding of the epitopes capable of inducing broad sarbecovirus neutralization. Here, we report the identification of 241 anti-RBD broad sarbecovirus neutralizing antibodies isolated from 44 SARS-CoV-2 vaccinated SARS convalescents. Neutralizing efficacy of these antibodies against D614G, SARS-CoV-1, Omicron variants (BA.1, BA.1.1, BA.2), RATG13 and Pangolin-GD is tested, and their binding capability to 21 sarbecovirus RBDs is measured. High-throughput yeast-display mutational screening was further applied to determine each antibody’s RBD escaping mutation profile, and unsupervised epitope clustering based on escaping mutation hotspots was performed 7,15–18 . A total of 6 clusters of broad sarbecovirus neutralizing antibodies with diverse breadth and epitopes were identified, namely Group E1 (S309 19 , BD55-3152 site), E3 (S2H97 20 site), F1 (CR3022 21 , S304 22 site), F2 (DH1047 23 , BD55-3500 site), F3 (ADG-2 24 , BD55-3372 site) and B’ (S2K146 25 site). Members of E1, F2 and F3 demonstrate the highest neutralization potency;yet, Omicron, especially BA.2, has evolved multiple mutations (G339D, N440K, T376A, D405N, R408S) to escape antibodies of these groups. Nevertheless, broad sarbecovirus neutralizing antibodies that survived Omicron would serve as favorable therapeutic candidates. Furthermore, structural analyses of selected drug candidates propose two non-competing antibody pairing strategies, E1-F2 and E1-F3, as broad-spectrum antibody cocktails. Together, our work provides a comprehensive epitope map of broad sarbecovirus neutralizing antibodies and offers critical instructions for designing broad-spectrum vaccines.

5.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327122

ABSTRACT

At present, COVID-19 poses a serious threat to global human health, and the cumulative confirmed cases in America, Brazil and India continue to grow rapidly. Therefore, the prediction models of cumulative confirmed cases in America, Brazil and India from August 1, 2021 to December 31, 2021 were established. In this study, the prevalence data of COVID-19 from 1 August 2021 to 31 December 2021 were collected from the World Health Organization website. Several ARIMA models were formulated with different ARIMA parameters. ARIMA (7,2,0), ARIMA (3,2,1), and ARIMA (10,2,4) models with the lowest MAPE values (0.00132, 0.00048, and 0.00021) were selected as the best models for America, Brazil, and India, respectively. Initial combinations of model parameters were selected using the automated ARIMA model, and the optimized model parameters were then found based on Bayesian information criterion (BIC). The analytical tools autocorrelation function (ACF), and partial autocorrelation function (PACF) were used to evaluate the reliability of the model. The performance of different models in predicting confirmed cases from January 1, 2022 to January 5, 2022 was compared by using root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). This study shows that ARIMA models are suitable for predicting the prevalence of COVID-19 in the future. The results of the analysis can shed light on understanding the trends of the outbreak and give an idea of the epidemiological stage of these regions. Besides, the prediction of COVID-19 prevalence trends of America, Brazil, and India can help take precautions and policy formulation for this epidemic in other countries.

6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-325404

ABSTRACT

Background: During the epidemic of COVID-19 of China, the emergency medical teams are facing serious stress in the front-line. As far as we know, there are no studies to test the applicability and measurement properties of the 10-item Chinese perceived stress scale (CPSS-10) in the emergency medical team. Methods: From March 17 to 27, 2020, an online survey was conducted on the emergency medical teams of Liaoning Province who supporting Wuhan. The CPSS-10 was used to measure the stress of medical workers. Classical test theory (CTT), bifactor model and multidimensional graded response model (MGRM) were used to analyze the measurement characteristics and differential item functioning (DIF) of CPSS-10. Results: The Cronbach's alpha coefficient of CPSS-10 was 0.86. Bifactor model confirmed that CPSS-10 was a two-factor structure. MGRM showed ordered response categories of K10. Item 8 could distinguish individual stress, but the slope of this item was very large (slope is 7.97, which was higher than 4), showing local dependence. There was a significant age DIF, but no DIF in gender. After removing the items 2, 5, and 8, the CPSS-7 showed high reliability, without DIF of age and gender, and there was no local dependence. Conclusions: MGRM could provide useful measurement information about CPSS-10 and CPSS-7. MGRM found that CPSS-10 did not fully conform to the item response theory (IRT). CPSS-7 had proved to be a more effective and reliable tool for assessing the perceived stress of emergency medical team.

7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-325222

ABSTRACT

BACKGROUND: Previous study suggested that Chinese Herbal Medicine (CHM) Formula Huashibaidu granule might shorten disease course of Corona Virus Disease 2019 (COVID-19) patients. Our research aims to investigate the early treatment effect of Huashibaidu granule in mild COVID-19 patients under well clinical management.METHODS: An unblended cluster-randomized clinical trial was conducted at the Dongxihu FangCang hospital. 2 cabins were randomly allocated to CHM or control group, with 204 randomly sampled mild COVID-19 patients in each cabin. All participants received a 7-day conventional treatment, and CHM group cabin used additional Huashibaidu granule 10g twice daily. Participants were followed up until they met clinical endpoint. The primary outcome was patient become worsening before clinical endpoint occurred. The secondary outcomes was discharge with cure before clinical endpoint occurred and relief of composite symptoms after 7 days treatment.FINDINGS: All 408 participants were followed up to meet clinical endpoint and included in statistical analysis. The baseline characteristics were comparable between 2 groups. The number of worsening patients in the CHM group was 5 (2.5%), and that in the control group was 16 (7.8%). There was a significant difference between groups (P=0.014). 8 foreseeable mild adverse events occurred without statistical difference between groups.INTERPRETATION: 7-day early treatment with Huashibaidu granule reduced worsening conversion of mild COVID-19 patients. Our study supports Huashibaidu Granule as an active option for early treatment of mild COVID-19 in similar medical locations with well management.TRIAL REGISTRATION: The Chinese Clinical Trial Registry: ChiCTR2000029763.FUNDING: This study was supported by “National Key R&D Program of China” (No.2020YFC0841500).DECLARATION OF INTERESTS: The authors guaranteed that there existed no competing interest in this paper.ETHICS APPROVAL STATEMENT: Ethics Review Committee of Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences Approval of Ethical Review Acceptance Number: S2020-001;Approval Number: P20001/PJ01.

8.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-322526

ABSTRACT

The aim of our study was to describe the clinical characteristics and outcomes of patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia who underwent elective tracheostomies. We investigated all COVID-19 patients who underwent elective tracheostomies in intensive care units (ICUs) of 23 hospitals in Hubei Province, China, from January 8, 2020 to March 25, 2020. Demographic information, clinical characteristics, treatment, details of the tracheostomy procedure, successful weaning after tracheostomy, and living status were collected and analyzed. A total of 80 patients were included. The median duration from endotracheal intubation to tracheostomy was 17.5 [IQR 11.3-27.0] days. Most tracheotomies were performed by ICU physicians (62 (77.5%)) and using percutaneous techniques (63 (78.8%)) at the ICU bedside (76 (95.0%)). At 60 days after intubation, 31 (38.8%) patients experienced successful weaning from the ventilator, 17 (21.2%) patients were discharged from the ICU, and 43 (53.8%) patients had died. Higher 60-day mortality (22 (73.3%) vs 21 (42.0%)) was identified in patients who underwent early tracheostomy. In patients with SARS-CoV-2 pneumonia, tracheostomies were feasible to conduct by ICU physicians at bedside with few major complications. However, tracheostomies within 14 days of endotracheal intubation should be avoided.

9.
Front Med (Lausanne) ; 8: 696976, 2021.
Article in English | MEDLINE | ID: covidwho-1450816

ABSTRACT

Background: Previous research suggested that Chinese Medicine (CM) Formula Huashibaidu granule might shorten the disease course in coronavirus disease 2019 (COVID-19) patients. This research aimed to investigate the early treatment effect of Huashibaidu granule in well-managed patients with mild COVID-19. Methods: An unblinded cluster-randomized clinical trial was conducted at the Dongxihu FangCang hospital. Two cabins were randomly allocated to a CM or control group, with 204 mild COVID-19 participants in each cabin. All participants received conventional treatment over a 7 day period, while the ones in CM group were additionally given Huashibaidu granule 10 g twice daily. Participants were followed up to their clinical endpoint. The primary outcome was worsening symptoms before the clinical endpoint. The secondary outcomes were cure and discharge before the clinical endpoint and alleviation of composite symptoms after the 7 days of treatment. Results: All 408 participants were followed up to their clinical endpoint and included in statistical analysis. Baseline characteristics were comparable between the two groups (P > 0.05). The number of worsening patients in the CM group was 5 (2.5%), and that in the control group was 16 (7.8%) with a significant difference between groups (P = 0.014). Eight foreseeable mild adverse events occurred without statistical difference between groups (P = 0.151). Conclusion: Seven days of early treatment with Huashibaidu granule reduced the likelihood of worsening symptoms in patients with mild COVID-19. Our study supports Huashibaidu granule as an active option for early treatment of mild COVID-19 in similar well-managed medical environments. Clinical Trial Registration:www.chictr.org.cn/showproj.aspx?proj=49408, identifier: ChiCTR2000029763.

10.
Front Public Health ; 9: 664214, 2021.
Article in English | MEDLINE | ID: covidwho-1367763

ABSTRACT

Background: The outbreak of novel coronavirus disease 2019 (COVID-19) has been challenging globally following the scarcity of medical resources after a surge in demand. As the pandemic continues, the question remains on how to accomplish more with the existing resources and improve the efficiency of existing health care delivery systems worldwide. In this study, we reviewed the experience from Wuhan - the first city to experience a COVID-19 outbreak - that has presently shown evidence for efficient and effective local control of the epidemic. Material and Methods: We performed a retrospective qualitative study based on the document analysis of COVID-19-related materials and interviews with first-line people in Wuhan. Results: We extracted two themes (the evolution of Wuhan's prevention and control strategies on COVID-19 and corresponding effectiveness) and four sub-themes (routine prevention and control period, exploration period of targeted prevention and control strategies, mature period of prevention and control strategies, and recovery period). How Wuhan combatted COVID-19 through multi-tiered and multi-sectoral collaboration, overcoming its fragmented, hospital-centered, and treatment-dominated healthcare system, was illustrated and summarized. Conclusion: Four lessons for COVID-19 prevention and control were summarized: (a) Engage the communities and primary care not only in supporting but also in screening and controlling, and retain community and primary care as among the first line of COVID-19 defense; (b) Extend and stratify the existing health care delivery system; (c) Integrate person-centered integrated care into the whole coordination; and (d) Delink the revenue relationship between doctors and patients and safeguard the free-will of physicians when treating patients.


Subject(s)
COVID-19 , China/epidemiology , Humans , Pandemics , Retrospective Studies , SARS-CoV-2
11.
Front Med (Lausanne) ; 8: 676560, 2021.
Article in English | MEDLINE | ID: covidwho-1337649

ABSTRACT

Objectives: COVID-19 emerged and rapidly spread throughout the world. Testing strategies focussing on patients with COVID-19 require assays that are high-throughput, low-risk of infection, and with small sample volumes. Antigen surveillance can be used to identify exposure to pathogens and measure acute infections. Methods: A total of 914 serum samples, collected from 309 currently infected COVID-19 patients, 48 recovered ones, and 410 non-COVID-19 patients, were used to measure N protein antigen levels by a chemilumineseent immunoassay. Diagnostic performances were analyzed in different periods after onset. Results: There was a high level of N protein antigen in COVID-19 patients (0.56 COI), comparing to the recovered patients (0.12 COI) and controls (0.19 COI). In receiver-operating characteristic curve analysis, the area under the curve of serum N protein antigen was 0.911 in the first week after onset. In this period, Sensitivity and specificity of serologic N protein antigen testing was 76.27 and 98.78%. Diagnosis performance of specific antibodies became better from the third week after onset. Subgroup analysis suggested that severe patients had higher levels of antigens than mild patients. Conclusions: High level of serum antigen suggested early infection and serious illness. Serum N protein antigen testing by chemiluminescence immunoassay is considered as a viable assay used to improve diagnostic sensitivity for current patients.

12.
Front Genet ; 11: 574962, 2020.
Article in English | MEDLINE | ID: covidwho-1125459

ABSTRACT

Salvia species have been widely used as medicinal plants and have played an important role in the treatment and recovery of individuals with COVID-19. In this study, we reported two newly identified whole chloroplast genome sequences of Salvia medicinal plants (Salvia yangii and Salvia miltiorrhiza f. alba) and compared them with those of seven other reported Salvia chloroplast genomes. These were proven to be highly similar in terms of overall size, genome structure, gene content, and gene order. We identified 10 mutation hot spots (trnK-rps16, atpH-atpI, psaA-ycf3, ndhC-trnV, ndhF, rpl32-trnL, ndhG-ndhI, rps15-ycf1, ycf1a, and ycf1b) as candidate DNA barcodes for Salvia. Additionally, we observed the transfer of nine large-sized chloroplast genome fragments, with a total size of 49,895 bp (accounting for 32.97% of the chloroplast genome), into the mitochondrial genome as they shared >97% sequence similarity. Phylogenetic analyses of the whole chloroplast genome provided a high resolution of Salvia. This study will pave the way for the identification and breeding of Salvia medicinal plants and further phylogenetic evolutionary research on them as well.

13.
Front Microbiol ; 11: 603058, 2020.
Article in English | MEDLINE | ID: covidwho-1058427

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has now become a global pandemic due to its high transmissibility. The unavoidable shortcomings of traditional diagnostic assay, including nucleic acid testing, diverse serological assays characterized by high-throughput and less workload, are playing a more and more crucial role to supplement the nucleic acid test. In this review, we summarize the dynamic change of the specific IgM, IgG, and IgA antibodies against SARS-CoV-2 as well as neutralizing antibodies and discuss the clinical utility and limitations of the different serological assays. SARS-CoV-2, a newly discovered virus, shows some unique pathogenetic and epidemiological characteristics that have not been completely understood so far. Currently, studies about the antibody responses against SARS-CoV-2 and the clinical utility of serological testing are increasing. It's well suggested that the combination of serological tests and nucleic acid tests can cohesively improve the testing efficiency for identifying COVID-19 suspected patients.

14.
Front Med (Lausanne) ; 7: 615845, 2020.
Article in English | MEDLINE | ID: covidwho-1016068

ABSTRACT

Background: The outbreak of coronavirus disease 2019 (COVID-19) has led to a large and increasing number of patients requiring prolonged mechanical ventilation and tracheostomy. The indication and optimal timing of tracheostomy in COVID-19 patients are still unclear, and the outcomes about tracheostomy have not been extensively reported. We aimed to describe the clinical characteristics and outcomes of patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia who underwent elective tracheostomies. Methods: The multi-center, retrospective, observational study investigated all the COVID-19 patients who underwent elective tracheostomies in intensive care units (ICUs) of 23 hospitals in Hubei province, China, from January 8, 2020 to March 25, 2020. Demographic information, clinical characteristics, treatment, details of the tracheostomy procedure, successful weaning after tracheostomy, and living status were collected and analyzed. Data were compared between early tracheostomy patients (tracheostomy performed within 14 days of intubation) and late tracheostomy patients (tracheostomy performed after 14 days). Results: A total of 80 patients were included. The median duration from endotracheal intubation to tracheostomy was 17.5 [IQR 11.3-27.0] days. Most tracheotomies were performed by ICU physician [62 (77.5%)], and using percutaneous techniques [63 (78.8%)] at the ICU bedside [76 (95.0%)]. The most common complication was tracheostoma bleeding [14 (17.5%)], and major bleeding occurred in 4 (5.0%) patients. At 60 days after intubation, 31 (38.8%) patients experienced successful weaning from ventilator, 17 (21.2%) patients discharged from ICU, and 43 (53.8%) patients had died. Higher 60 day mortality [22 (73.3%) vs. 21 (42.0%)] were identified in patients who underwent early tracheostomy. Conclusions: In patients with SARS-CoV-2 pneumonia, tracheostomies were feasible to conduct by ICU physician at bedside with few major complications. Compared with tracheostomies conducted after 14 days of intubation, tracheostomies within 14 days were associated with an increased mortality rate.

15.
Epidemiol Infect ; 148: e238, 2020 09 30.
Article in English | MEDLINE | ID: covidwho-807239

ABSTRACT

The mortality of coronavirus disease 2019 (COVID-19) differs between countries and regions. This study aimed to clarify the clinical characteristics of imported and second-generation cases in Shaanxi. This study included 134 COVID-19 cases in Shaanxi outside Wuhan. Clinical data were compared between severe and non-severe cases. We further profiled the dynamic laboratory findings of some patients. In total, 34.3% of the 134 patients were severe cases, 11.2% had complications. As of 7 March 2020, 91.8% patients were discharged and one patient (0.7%) died. Age, lymphocyte count, C-reactive protein, erythrocyte sedimentation rate, direct bilirubin, lactate dehydrogenase and hydroxybutyrate dehydrogenase showed difference between severe and no-severe cases (all P < 0.05). Baseline lymphocyte count was higher in survived patients than in non-survivor case, and it increased as the condition improved, but declined sharply when death occurred. The interleukin-6 (IL-6) level displayed a downtrend in survivors, but rose very high in the death case. Pulmonary fibrosis was found on later chest computed tomography images in 51.5% of the pneumonia cases. Imported and second-generation cases outside Wuhan had a better prognosis than initial cases in Wuhan. Lymphocyte count and IL-6 level could be used for evaluating prognosis. Pulmonary fibrosis as the sequelae of COVID-19 should be taken into account.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , China/epidemiology , Coronavirus Infections/blood , Coronavirus Infections/complications , Coronavirus Infections/mortality , Female , Humans , Interleukin-6/blood , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Retrospective Studies , SARS-CoV-2 , Young Adult
17.
Chest ; 158(3): 939-946, 2020 09.
Article in English | MEDLINE | ID: covidwho-728480

ABSTRACT

Background: In December 2019, a novel coronavirus-associated pneumonia, now known as coronavirus disease 2019 (COVID-19), was first detected in Wuhan, China. To prevent the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and treat patients with mild symptoms, sports stadiums and convention centers were reconstructed into mobile hospitals. Research Question: It is unknown whether a mobile cabin hospital can provide a safe treatment site for patients with mild COVID-19 symptoms. Study Design and Methods: This study retrospectively reviewed the medical records of 421 patients with COVID-19 admitted to a mobile cabin hospital in Wuhan from February 9, 2020, to March 5, 2020. Clinical data comprised patient age, sex, clinical presentation, chest imaging, nucleic acid testing, length of hospitalization, and outcomes. Results: Of the patients who were discharged from the cabin hospital, 362 (86.0%) were categorized as recovered; 14.0% developed severe symptoms and were transferred to a designated hospital. The most common presenting symptoms were fever (60.6%) and cough (52.0%); 5.2% exhibited no obvious symptoms. High fever (> 39.0°C) was more common in severe cases than in recovered cases (18.6% vs 6.6%). The distribution of lung lesions was peripheral in 85.0% of patients, multifocal in 69.4%, and bilateral in 68.2%. The most common pattern was ground-glass opacity (67.7%), followed by patchy shadowing (49.2%). The incidence of patchy shadowing was higher in patients with severe disease (66.1%) than in those who recovered (31.8%, P < .0001). The median length of hospitalization was 17 days (interquartile range, 14-19 days), and the median time taken for positive real-time reverse transcriptase polymerase chain reaction results to become negative in recovered patients was 8 days (interquartile range, 6-10 days). Interpretation: Mobile cabin hospitals provide a safe treatment site for patients with mild COVID-19 symptoms and offer an effective isolation area to prevent the spread of severe acute respiratory syndrome coronavirus 2.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/therapy , Mobile Health Units , Pneumonia, Viral/therapy , Adolescent , Adult , Aged , COVID-19 , Child , Child, Preschool , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , DNA, Viral/analysis , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Retrospective Studies , SARS-CoV-2 , Survival Rate/trends , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL