ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing an exponentially increasing number of coronavirus disease 19 (COVID-19) cases globally. Prioritization of medical countermeasures for evaluation in randomized clinical trials is critically hindered by the lack of COVID-19 animal models that enable accurate, quantifiable, and reproducible measurement of COVID-19 pulmonary disease free from observer bias. We first used serial computed tomography (CT) to demonstrate that bilateral intrabronchial instillation of SARS CoV-2 into crab-eating macaques (Macaca fascicularis) results in mild-to-moderate lung abnormalities qualitatively characteristic of subclinical or mild-to-moderateCOVID-19 (e.g., ground-glass opacities with or without reticulation, paving, or alveolar consolidation, peri-bronchial thickening, linear opacities) at typical locations (peripheral>central, posterior and dependent, bilateral, multi-lobar). We then used positron emission tomography (PET) analysis to demonstrate increased FDG uptake in the CT-defined lung abnormalities and regional lymph nodes. PET/CT imaging findings appeared in all macaques as early as 2 days post exposure, variably progressed, and subsequently resolved by 6-12 days post exposure. Finally, we applied operator-independent, semi-automatic quantification of the volume and radiodensity of CT abnormalities as a possible primary endpoint for immediate and objective efficacy testing of candidate medical countermeasures.
ABSTRACT
Objective: To investigate the contamination status of SARS-CoV-2 in imported frozen seafood from a Russia cargo ship in Qingdao and to analyze the risk factors for infection in local stevedores. Methods: The method of "two-stage, full coverage and mixed sampling" was used to collect the seafood packaging samples for the nucleic acid detection of SARS-CoV-2 by real-time fluorescent quantitative RT-PCR. A unified questionnaire was designed to investigate 71 stevedores in two shifts through telephone interview. The stevedores were divided into two groups, with 23 in the shit with two infections was group A and 48 in the shift without infection was group B. Software Epi Info7.2 was used to identify the risk factors for SARS-CoV-2 infections in the stevedores. Results: In the frozen seafood from a Russia cargo ship, the total positive rate of SARS-CoV-2 nucleic acid in the frozen seafood was 11.53% (106/919). The positive rate of SARS-CoV-2 nucleic acid in the frozen seafood unloaded by group A (14.29%,70/490) was significantly higher than that in the frozen seafood unloaded by group B (8.39%,36/429)(χ2=7.79,P=0.01) and the viral loads detected in the frozen seafood unloaded by group A were higher than those detected in the frozen seafood unloaded by group B. The scores of personal protection and behaviors in the stevedores in group A were significantly lower than those in group B (P<0.05), and toilet use, smoking and improper hand washing before meals were the risk factors for the infection. Conclusions: The imported frozen seafood was contaminated by SARS-CoV-2 and the contamination distribution was uneven. Supervision and management of personal occupational protection and behaviors of workers engaged in imported frozen food transportation should be strengthened. It is suggested that a closed-loop monitoring and management system for the whole process of "fishing-transport- loading/unloading" should be established by marine fishery authority.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Risk Factors , Seafood , ShipsABSTRACT
BACKGROUND AND PURPOSE: Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection is associated with hypercoagulability. We sought to evaluate the demographic and clinical characteristics of cerebral venous thrombosis among patients hospitalized for coronavirus disease 2019 (COVID-19) at 6 tertiary care centers in the New York City metropolitan area. MATERIALS AND METHODS: We conducted a retrospective multicenter cohort study of 13,500 consecutive patients with COVID-19 who were hospitalized between March 1 and May 30, 2020. RESULTS: Of 13,500 patients with COVID-19, twelve had imaging-proved cerebral venous thrombosis with an incidence of 8.8 per 10,000 during 3 months, which is considerably higher than the reported incidence of cerebral venous thrombosis in the general population of 5 per million annually. There was a male preponderance (8 men, 4 women) and an average age of 49 years (95% CI, 36-62 years; range, 17-95 years). Only 1 patient (8%) had a history of thromboembolic disease. Neurologic symptoms secondary to cerebral venous thrombosis occurred within 24 hours of the onset of the respiratory and constitutional symptoms in 58% of cases, and 75% had venous infarction, hemorrhage, or both on brain imaging. Management consisted of anticoagulation, endovascular thrombectomy, and surgical hematoma evacuation. The mortality rate was 25%. CONCLUSIONS: Early evidence suggests a higher-than-expected frequency of cerebral venous thrombosis among patients hospitalized for COVID-19. Cerebral venous thrombosis should be included in the differential diagnosis of neurologic syndromes associated with SARS-CoV-2 infection.
Subject(s)
COVID-19/epidemiology , Intracranial Thrombosis/epidemiology , Thromboembolism/epidemiology , Adult , COVID-19/diagnosis , Causality , Cohort Studies , Comorbidity , Female , Humans , Intracranial Thrombosis/diagnosis , Male , Middle Aged , New York City/epidemiology , Retrospective Studies , Risk Factors , Thrombectomy/adverse effects , Thromboembolism/diagnosis , Venous Thrombosis/epidemiologyABSTRACT
Objective To investigate the efficacy of neutralizing antibodies induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain (RBD) and spike (S) protein S1 subunit. Methods The SARS-CoV-2 RBD and mouse immunoglobulin G1 (IgG1) Fc fragment (mFc) fusion protein expression plasmid pVRCRBD- mFc was constructed and transfected into human embryonic kidney 293T cells. The RBD-mFc fusion protein in the cell supernatants was detected by Western blotting. The effect of RBD-mFc in cell supernatants and CHO recombinant S1-human IgG1 Fc (S1-hFc) fusion protein on SARS-CoV-2 infection was detected by microneutralization test. BALB/c mice were immunized with plasmid pVRC-RBD-mFc and S1-hFc fusion protein via intramuscular injection. Anti-S1 IgG antibodies in mouse sera were detected by enzyme-linked immunosorbent assay (ELISA), and the virus neutralization activity of mouse sera was detected by microneutralization test. Results The RBD-mFc fusion protein could be detected in the culture supernatants of 293T cells transfected with the plasmid pVRC-RBD-mFc, the concentrated supernatants and the S1- hFc fusion protein could inhibit SARS-CoV-2 infection on Vero E6 cells in a concentration-dependent manner. Anti-S1 IgG antibodies could be detected in the sera of mice immunized with plasmid pVRC-RBD-mFc and S1-hFc fusion protein, and the sera of both groups could neutralize SARS-CoV-2 infection. The serum antibody titers and virus neutralization activity of S1- hFc fusion protein immunized mice were significantly higher than those of plasmid pVRC-RBD-mFc immunized mice (both P<0.01). Conclusion Both SARS-CoV-2 RBD and S1 subunit may be used as effective vaccine antigens. Compared with DNA vaccine, recombinant subunit vaccine can induce neutralizing antibody more effectively..