Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Document Type
Language
Clinical aspect
Year range
1.
Mater Sci Eng C Mater Biol Appl ; 112: 110924, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-1017020

ABSTRACT

Research on highly effective antiviral drugs is essential for preventing the spread of infections and reducing losses. Recently, many functional nanoparticles have been shown to possess remarkable antiviral ability, such as quantum dots, gold and silver nanoparticles, nanoclusters, carbon dots, graphene oxide, silicon materials, polymers and dendrimers. Despite their difference in antiviral mechanism and inhibition efficacy, these functional nanoparticles-based structures have unique features as potential antiviral candidates. In this topical review, we highlight the antiviral efficacy and mechanism of these nanoparticles. Specifically, we introduce various methods for analyzing the viricidal activity of functional nanoparticles and the latest advances in antiviral functional nanoparticles. Furthermore, we systematically describe the advantages and disadvantages of these functional nanoparticles in viricidal applications. Finally, we discuss the challenges and prospects of antiviral nanostructures. This topic review covers 132 papers and will enrich our knowledge about the antiviral efficacy and mechanism of various functional nanoparticles.


Subject(s)
Antiviral Agents/chemistry , Nanoparticles/chemistry , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , DNA Viruses/drug effects , DNA Viruses/physiology , Graphite/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Nanoparticles/therapeutic use , Nanoparticles/toxicity , Polymers/chemistry , Quantum Dots/chemistry , Quantum Dots/therapeutic use , Quantum Dots/toxicity , Zika Virus/drug effects , Zika Virus Infection/drug therapy , Zika Virus Infection/veterinary
2.
ACS Appl Bio Mater ; 3(8): 4809-4819, 2020 Aug 17.
Article in English | MEDLINE | ID: covidwho-833523

ABSTRACT

Despite the good biocompatibility and antibacterial activity of zinc sulfide nanoparticles (ZnS NPs), whether they possess antiviral activity is still unclear. Here, GSH-modified ZnS NPs (GSH-ZnS NPs) were synthesized and their significant antiviral activity was demonstrated using the Arteriviridae family RNA virus, porcine reproductive and respiratory syndrome virus (PRRSV), as a model. Mechanistically, GSH-ZnS NPs were shown to reduce PRRSV-induced ROS production to prevent PRRSV multiplication, with no activating effect on the interferon (IFN) signal pathway, the first defense line against virus infection. Furthermore, isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis of GSH-ZnS NP-treated cells revealed the involvement of numerous crucial proteins in virus proliferation, with vitronectin (VTN) being confirmed as an efficient PRRSV antagonist here. Furthermore, GSH-ZnS NPs were found to have potent antiviral effects on the Herpesviridae family DNA virus, pseudorabies virus (PRV), the Coronaviridae family positive-sense RNA virus, porcine epidemic diarrhea virus (PEDV), and the Rhabdoviridae family negative-stranded RNA virus, vesicular stomatitis virus (VSV), indicating their broad-spectrum antiviral activity against viruses from different families with various genome types. Overall, GSH-ZnS NP is a prospective candidate for the development of antiviral nanomaterials and may serve as a model for investigation of potential host restriction factors in combination with proteomics.

3.
Small ; 16(13): e1906206, 2020 04.
Article in English | MEDLINE | ID: covidwho-1479

ABSTRACT

With the gradual usage of carbon dots (CDs) in the area of antiviral research, attempts have been stepped up to develop new antiviral CDs with high biocompatibility and antiviral effects. In this study, a kind of highly biocompatible CDs (Gly-CDs) is synthesized from active ingredient (glycyrrhizic acid) of Chinese herbal medicine by a hydrothermal method. Using the porcine reproductive and respiratory syndrome virus (PRRSV) as a model, it is found that the Gly-CDs inhibit PRRSV proliferation by up to 5 orders of viral titers. Detailed investigations reveal that Gly-CDs can inhibit PRRSV invasion and replication, stimulate antiviral innate immune responses, and inhibit the accumulation of intracellular reactive oxygen species (ROS) caused by PRRSV infection. Proteomics analysis demonstrates that Gly-CDs can stimulate cells to regulate the expression of some host restriction factors, including DDX53 and NOS3, which are directly related to PRRSV proliferation. Moreover, it is found that Gly-CDs also remarkably suppress the propagation of other viruses, such as pseudorabies virus (PRV) and porcine epidemic diarrhea virus (PEDV), suggesting the broad antiviral activity of Gly-CDs. The integrated results demonstrate that Gly-CDs possess extraordinary antiviral activity with multisite inhibition mechanisms, providing a promising candidate for alternative therapy for PRRSV infection.


Subject(s)
Carbon/pharmacology , Glycyrrhizic Acid/pharmacology , Microbial Viability , Porcine Reproductive and Respiratory Syndrome , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Immunity, Innate/drug effects , Microbial Viability/drug effects , Porcine respiratory and reproductive syndrome virus/drug effects , Swine , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...