Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
3.
J Hosp Med ; 17(4): 276-280, 2022 04.
Article in English | MEDLINE | ID: covidwho-1712135

ABSTRACT

For the first 6 months of the novel coronavirus-19 (COVID-19) pandemic, the hospital medicine procedure service at our center was temporarily unavailable. We assessed paracentesis rates and clinical outcomes for patients admitted with cirrhosis and ascites before and during the COVID-19 pandemic. Two hundred and twenty-four and 131 patients with cirrhosis and ascited were admitted to hospital before and during COVID-19 respectively. Approximately 50.9% and 49.6% of patients underwent a paracentesis within 24 h pre- and mid-pandemic, p = .83. No differences were observed for length-of-stay or 30-day readmissions. GI consultation was associated with higher rates of paracentesis in both eras (p < .001 pre-COVID-19, and p = .01 COVID-19). Changes due to the COVID-19 pandemic did not result in changes to rates of timely paracentesis in patients admitted with cirrhosis and ascites. While involvement of gastroenterology may increase rates of paracentesis, further efforts are needed to optimize rates of timely paracentesis to positively impact clinical outcomes.


Subject(s)
COVID-19 , Paracentesis , Ascites/complications , Ascites/therapy , Hospitals , Humans , Liver Cirrhosis/complications , Liver Cirrhosis/epidemiology , Liver Cirrhosis/therapy , Pandemics
4.
PLoS Pathog ; 17(9): e1009804, 2021 09.
Article in English | MEDLINE | ID: covidwho-1416909

ABSTRACT

Prior studies have demonstrated that immunologic dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of the immunologic drivers of death in the most critically ill patients. We performed immunophenotyping of viral antigen-specific and unconventional T cell responses, neutralizing antibodies, and serum proteins in critically ill patients with SARS-CoV-2 infection, using influenza infection, SARS-CoV-2-convalescent health care workers, and healthy adults as controls. We identify mucosal-associated invariant T (MAIT) cell activation as an independent and significant predictor of death in COVID-19 (HR = 5.92, 95% CI = 2.49-14.1). MAIT cell activation correlates with several other mortality-associated immunologic measures including broad activation of CD8+ T cells and non-Vδ2 γδT cells, and elevated levels of cytokines and chemokines, including GM-CSF, CXCL10, CCL2, and IL-6. MAIT cell activation is also a predictor of disease severity in influenza (ECMO/death HR = 4.43, 95% CI = 1.08-18.2). Single-cell RNA-sequencing reveals a shift from focused IFNα-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 -a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , B-Lymphocytes/immunology , Biomarkers/blood , Blood Proteins/metabolism , Cohort Studies , Critical Illness/mortality , Female , Humans , Immunophenotyping , Influenza, Human/immunology , Lectins, C-Type/immunology , Lymphocyte Activation , Male , Middle Aged , Mucosal-Associated Invariant T Cells/immunology , Patient Acuity
5.
Nat Commun ; 12(1): 2055, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1171493

ABSTRACT

Identification of protective T cell responses against SARS-CoV-2 requires distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity to other coronaviruses. Here we show a range of T cell assays that differentially capture immune function to characterise SARS-CoV-2 responses. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) are found in 168 PCR-confirmed SARS-CoV-2 infected volunteers, but are rare in 119 uninfected volunteers. Highly exposed seronegative healthcare workers with recent COVID-19-compatible illness show T cell response patterns characteristic of infection. By contrast, >90% of convalescent or unexposed people show proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on assay and antigen selection. Memory responses to specific non-spike proteins provide a method to distinguish recent infection from pre-existing immunity in exposed populations.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Cross Reactions/immunology , Immunoassay/methods , SARS-CoV-2/physiology , T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/epidemiology , Cell Proliferation , Cytokines/metabolism , HEK293 Cells , Health Personnel , Humans , Immunoglobulin G/immunology , Immunologic Memory , Interferon-gamma/metabolism , Pandemics , Peptides/metabolism , SARS-CoV-2/drug effects
6.
Euro Surveill ; 25(42)2020 10.
Article in English | MEDLINE | ID: covidwho-886128

ABSTRACT

BackgroundThe progression and geographical distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the United Kingdom (UK) and elsewhere is unknown because typically only symptomatic individuals are diagnosed. We performed a serological study of blood donors in Scotland in the spring of 2020 to detect neutralising antibodies to SARS-CoV-2 as a marker of past infection and epidemic progression.AimOur objective was to determine if sera from blood bank donors can be used to track the emergence and progression of the SARS-CoV-2 epidemic.MethodsA pseudotyped SARS-CoV-2 virus microneutralisation assay was used to detect neutralising antibodies to SARS-CoV-2. The study comprised samples from 3,500 blood donors collected in Scotland between 17 March and 18 May 2020. Controls were collected from 100 donors in Scotland during 2019.ResultsAll samples collected on 17 March 2020 (n = 500) were negative in the pseudotyped SARS-CoV-2 virus microneutralisation assay. Neutralising antibodies were detected in six of 500 donors from 23 to 26 March. The number of samples containing neutralising antibodies did not significantly rise after 5-6 April until the end of the study on 18 May. We found that infections were concentrated in certain postcodes, indicating that outbreaks of infection were extremely localised. In contrast, other areas remained comparatively untouched by the epidemic.ConclusionAlthough blood donors are not representative of the overall population, we demonstrated that serosurveys of blood banks can serve as a useful tool for tracking the emergence and progression of an epidemic such as the SARS-CoV-2 outbreak.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Blood Donors , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Population Surveillance , Adult , COVID-19 , Cluster Analysis , Coronavirus Infections/blood , Enzyme-Linked Immunosorbent Assay , Female , Geography, Medical , Humans , Inhibitory Concentration 50 , Male , Models, Immunological , Neutralization Tests , Pneumonia, Viral/blood , Prevalence , SARS-CoV-2 , Scotland/epidemiology , Sensitivity and Specificity , Seroepidemiologic Studies , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL