Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Zhonghua Yi Xue Za Zhi ; 102: 1-6, 2022 Jun 13.
Article in Chinese | MEDLINE | ID: covidwho-1893003

ABSTRACT

Objective: The gold immunochromatographic assay for detection of SARS-CoV-2 antigen was evaluated by international multi-center clinical trial. Methods: A total of 1 855 clinical parallel samples with valid test results (for nucleic acid and antigen tests, respectively) were collected from nine countries, including Germany, the United Kingdom, Ukraine, France, India, Thailand, Malaysia, the United States of America and Brazil, with sampling period from January 3, 2021 to September 22, 2021. These samples were detected by SARS-CoV-2 antigen test kit (colloidal gold immunochromatography assay) and nucleic acid detection kit (real-time fluorescent quantitative reverse transcription polymerase chain reaction). Positive coincidence rates [(number of antigen-positive cases/nucleic acid-positive cases)×100%], negative coincidence rates [(number of antigen-negative cases/nucleic acid-negative cases)×100%], total coincidence rates [(number of cases with consistent results for both antigen and nucleic acid detection/number of total cases) ×100%], as well as Kappa values were calculated. The differences of the above indictors among different countries were evaluated by the coefficient of variation. The detection rates of the antigen test for samples with different cycle threshold values (Ct values) for the nucleic acid detection, different characteristics and different mutant strains were analyzed. Results: For all samples, the positive, negative, and total coincidence rate between the antigen test and nucleic acid assay was 90.8% (569/627), 99.7% (1 224/1 228) and 96.7% (1 793/1 855), respectively, and the consistency coefficient Kappa value was 0.924. Among these countries, the coefficient of variation for positive coincidence rates (except for Malaysia with a lot of samples with Ct value>30), negative coincidence rates (except for France without negative samples) and total coincidence rates (except for France) was 6%,<1%, and 6%, respectively. When Ct values were less than 25, the detection rates of antigen test were 83.3%-100% for each countries (the coefficient of variation was 6%); The total detection rate and the coefficient of variation was 93.4% (428/458) and 5%, respectively, for asymptomatic infected persons and cases within 7 days post onset of symptoms; the total detection rate for various SARS-CoV-2 mutant strains was 97.5% (119/122); and it showed negative results for samples from cases infected with other viruses, including influenza A virus subtype H1N1, influenza B virus, respiratory syncytial virus subgroups A and B, coxsackievirus 16, human metapneumovirus, parainfluenza virus types 1 and 4, Epstein-Barr virus and adenovirus. Conclusion: The SARS-CoV-2 antigen test kit showed excellent authenticity, and there were few differences for its indictors among nine countries, therefore it can meet the needs of large-scale early screening of SARS-CoV-2 infection.

2.
BMC Microbiol ; 22(1): 42, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1690974

ABSTRACT

BACKGROUND: Quantitative point-of-care testing assay for detecting antibodies is critical to COVID-19 control. In this study, we established an up-conversion phosphor technology-based point-of-care testing (UPT-POCT), a lateral flow assay, for rapid COVID-19 diagnosis, as well as prediction of seral neutralizing antibody (NAb) activity and protective effects. METHODS: UPT-POCT was developed targeting total antibodies against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. Using ELISA as a contrast method, we evaluated the quantitation accuracy with NAb and serum samples. Cutoff for serum samples was determined through 70 healthy and 140 COVID-19 patients. We evaluated the cross-reactions with antibodies against other viruses. Then, we performed multi-center clinical trials of UPT-POCT, including 782 patients with 387 clinically confirmed COVID-19 cases. Furthermore, RBD-specific antibody levels were detected using UPT-POCT and microneutralization assay for samples from both patients and vaccinees. Specifically, the antibodies of recovered patients with recurrent positive (RP) reverse transcriptase-polymerase chain reaction test results were discussed. RESULTS: The ratios of signal intensities between the test and control bands on the lateral flow strip, namely, T/C ratios, was defined as the results of UPT-POCT. T/C ratios had excellent correlations with concentrations of NAb, as well as OD values of ELISA for serum samples. The sensitivity and specificity of UPT-POCT were 89.15% and 99.75% for 782 cases in seven hospitals in China, respectively. We evaluated RBD-specific antibodies for 528 seral samples from 213 recovered and 99 RP COVID-19 patients, along with 35 seral samples from inactivated SARS-CoV-2 vaccinees, and we discovered that the total RBD-specific antibody level indicated by T/C ratios of UPT-POCT was significantly related to the NAb titers in both COVID-19 patients (r = 0.9404, n = 527; ρ = 0.6836, n = 528) and the vaccinees (r = 0.9063, ρ = 0.7642, n = 35), and it was highly relevant to the protection rate against RP (r = 0.9886, n = 312). CONCLUSION: This study reveals that the UPT-POCT for quantitative detection of total RBD-specific antibody could be employed as a surrogate method for rapid COVID-19 diagnosis and prediction of protective effects.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Point-of-Care Testing , SARS-CoV-2/isolation & purification , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , China , Cross Reactions , Humans , Immunoassay , Limit of Detection , SARS-CoV-2/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology , Vaccination
3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-323518

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces new-onset diabetes and severe metabolic complications of pre-existing diabetes. The pathogenic mechanism underlying this is incompletely understood. Here, we provided evidence linking circulating GP73 with the exaggerated gluconeogenesis triggered by SARS-CoV-2 infection. We found that SARS-CoV-2 infection or glucotoxic conditions increased GP73 production and secretion. Secreted GP73 then trafficked to the liver and kidney to stimulate gluconeogenesis through the cAMP/PKA pathway. By using global phosphoproteomics, we found a drastic remodeling of the PKA kinase hub exerted by GP73. Notably, plasma GP73 levels were elevated and positively correlated with blood glucose in patients with COVID19 and diabetes. Neutralization of circulating GP73 in serum of individuals infected with SARS-CoV-2 or with diabetes reduced excessive gluconeogenesis in cultured hepatocytes, and lowered blood glucose levels in animal models of diabetes. Ablation of GP73 from whole animals has a profound glucose-lowering effect secondary to reduced gluconeogenesis. Thus, GP73 is a key glucogenic hormone contributing to SARS-CoV-2-induced glucose abnormality.

4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-312697

ABSTRACT

Background: The severe acute respiratory syndrome coronavirus-2 outbreak was identified in China in December 2019 and spread worldwide, reaching the pandemic levels. However, a specific, effective and proven therapy for the patients with coronavirus disease 2019 (COVID-19) remains elusive. We aim to compare the efficacy and the safety of three antiviral monotherapies (chloroquine phosphate, arbidol (Umifenovir) or lopinavir/ritonavir) in non-severe, hospitalised COVID-19 patients. Methods: : We retrospectively analysed the hospitalised, laboratory-confirmed COVID-19 patients, treated with antiviral monotherapies at Huizhou Municipal Central Hospital between Jan 19 and Mar 16, 2020. Demographic and clinical data were extracted from electronic medical records. The primary outcome of the study was the viral shedding interval. Results: : Twenty-seven patients with COVID-19 were included in the study with 10 receiving chloroquine phosphate, 11 receiving arbidol and 6 receiving lopinavir/ritonavir. Baseline demographics and clinical data were similar between groups. The median viral shedding interval in the lopinavir/ritonavir group was 13.0 days (95% CI: 12.2-23.8), while significantly shorter in the chloroquine group at 5.0 days (95% CI: 0.4-9.6) (p=0.003). A reduced median interval was also observed in the arbidol group, with 8.0 days (95%CI: 4.9-11.1) (p=0.008). Moreover, the hospitalisation duration was shorter in the chloroquine (9.3 ± 1.8 days, p<0.001) and arbidol groups (11.7 ± 3.7 days, p<0.001), and the hospitalisation costs were significantly reduced in the chloroquine (USD 1327 ± 566, p=0.001) and arbidol groups (USD 1167 ± 434, p<0.001), when compared with the lopinavir/ritonavir group (hospitalisation length and costs: 19.7 ± 4.4 days and USD 3806 ± 2262, respectively). Conclusions: : Chloroquine and arbidol could not only shorten the viral shedding interval but also decreased the hospitalisation duration and hospitalisation expenses. Trial registration: The ethics committee of the Huizhou Municipal Central Hospital approved this study, and the trial was registered with www.chictr.org.cn (ChiCTR2000030931).

5.
Nat Metab ; 4(1): 29-43, 2022 01.
Article in English | MEDLINE | ID: covidwho-1612214

ABSTRACT

Severe cases of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with elevated blood glucose levels and metabolic complications. However, the molecular mechanisms for how SARS-CoV-2 infection alters glycometabolic control are incompletely understood. Here, we connect the circulating protein GP73 with enhanced hepatic gluconeogenesis during SARS-CoV-2 infection. We first demonstrate that GP73 secretion is induced in multiple tissues upon fasting and that GP73 stimulates hepatic gluconeogenesis through the cAMP/PKA signaling pathway. We further show that GP73 secretion is increased in cultured cells infected with SARS-CoV-2, after overexpression of SARS-CoV-2 nucleocapsid and spike proteins and in lungs and livers of mice infected with a mouse-adapted SARS-CoV-2 strain. GP73 blockade with an antibody inhibits excessive glucogenesis stimulated by SARS-CoV-2 in vitro and lowers elevated fasting blood glucose levels in infected mice. In patients with COVID-19, plasma GP73 levels are elevated and positively correlate with blood glucose levels. Our data suggest that GP73 is a glucogenic hormone that likely contributes to SARS-CoV-2-induced abnormalities in systemic glucose metabolism.


Subject(s)
COVID-19/complications , COVID-19/virology , Glucose/metabolism , Hyperglycemia/etiology , Hyperglycemia/metabolism , Membrane Proteins/metabolism , SARS-CoV-2 , Animals , Biomarkers , Cyclic AMP-Dependent Protein Kinases/metabolism , Diet, High-Fat , Disease Models, Animal , Fasting , Gene Expression , Gluconeogenesis/drug effects , Gluconeogenesis/genetics , Host-Pathogen Interactions , Humans , Hyperglycemia/blood , Liver/metabolism , Liver/pathology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/blood , Membrane Proteins/genetics , Mice , Mice, Knockout , Organ Specificity/genetics
6.
Sci Total Environ ; 789: 147876, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1240611

ABSTRACT

Governments may relax physical distancing interventions for coronavirus disease 2019 (Covid-19) containment in warm seasons/areas to prevent economic contractions. However, it is not clear whether higher temperature may offset the transmission risk posed by this relaxation. This study aims to investigate the associations of the effective reproductive number (Rt) of Covid-19 with ambient temperature and the implementation of physical distancing interventions in the United States (US). This study included 50 states and one territory of the US with 4,532,650 confirmed cases between 29 January and 31 July 2020. We used an interrupted time-series model with a state-level random intercept for data analysis. An interaction term of 'physical distancing×temperature' was included to examine their interactions. Stratified analyses by temperature and physical distancing implementation were also performed to analyse the modifying effects. The overall median (interquartile range) Rt was 1.2 (1.0-2.3). The implementation of physical distancing was associated with a 12% decrease in the risk of Rt (relative risk [RR]: 0.88, 95% confident interval [CI]: 0.86-0.89), and each 5 °C increase in temperature was associated with a 2% decrease (RR: 0.98, 95%CI: 0.97-0.98). We observed a statistically significant interaction between temperature and physical distancing implementation, but all the RRs were small (close to one). The containing effects of high temperature were attenuated by 5.1% when physical distancing was implemented. The association of COVID-19 Rt with physical distancing implementation was more stable (0.88 vs. 0.89 in days when temperature was low and high, respectively). Increased temperature did not offset the risk of Covid-19 Rt posed by the relaxation of physical distancing implementation. Our study does not recommend relaxing the implementation of physical distancing interventions in warm seasons/areas.


Subject(s)
COVID-19 , Humans , Physical Distancing , SARS-CoV-2 , Temperature , United States
7.
Biomed Res Int ; 2021: 5909612, 2021.
Article in English | MEDLINE | ID: covidwho-1138456

ABSTRACT

BACKGROUND: The outbreak of coronavirus disease (COVID-19) has become a global public health emergency. OBJECTIVE: To evaluate the characteristics and outcomes of patients with COVID-19 in Anhui and to identify predictors of viral clearance. METHODS: We retrospectively analyzed the data collected from discharged patients with laboratory-confirmed SARS-CoV-2 infections. We compared clinical features between viral clearance and viral persistence, and evaluated factors associated with SARS-CoV-2 shedding using multiple linear regression. RESULTS: Among the 83 patients involved in the study, the median age was 43 years, while 60.2% were male, 35.4% had comorbidities, and the mortality was zero. The median time from illness onset to admission was 5 days (interquartile range (IQR), 2-7 days), and the median time from the illness onset to SARS-CoV-2 RNA detection was 16 days (IQR, 13-18 days). The factors influencing viral clearance were as follows: (1) delayed admission (beta 1.057, 95% CI 0.810-1.304; p ≤ 0.001) and (2) underlying comorbidities (beta 1.907, 95% CI 0.198-3.616; p = 0.029). No significant differences were observed in the length of stay (p = 0.246) and pneumonia between asymptomatic and symptomatic patients based on computed tomography (CT) (p = 0.124). CONCLUSIONS: Delayed admission and underlying comorbidities may effectively predict SARS-CoV-2 RNA clearance. For those infected with SARS-CoV-2, even asymptomatic patients without any clinical symptoms should be traced and isolated. This practice may reduce the spread of SARS-CoV-2 and slow the COVID-19 pandemic caused by the virus. Clinical Trial Registration Number: This trial is registered with 2020-051.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Adolescent , Adult , Comorbidity , Disease Outbreaks , Female , Humans , Male , RNA, Viral/genetics , Retrospective Studies , Virus Shedding/genetics , Young Adult
8.
Atmospheric Environment ; : 118270, 2021.
Article in English | ScienceDirect | ID: covidwho-1086773

ABSTRACT

Although the effects of meteorological factors on severe air pollution have been extensively investigated, quantitative decomposition of the contributions of meteorology and anthropogenic factors remains a big challenge. The novel coronavirus disease 2019 (COVID-19) pandemic affords a unique opportunity to test decomposition method. Based on a wind decomposition method, this study outlined an improved method to differentiate complex meteorological and anthropogenic effects. The improved method was then applied to investigate the cause of unanticipated haze pollution in China during the COVID-19 lockdown period. Results from the wind decomposition method show that weakened winds increased PM2.5 concentrations in the Beijing–Tianjin area and northeastern China (e.g., by 3.19 μg/m3 in Beijing). Using the improved decomposition method, we found that the combined meteorological effect (e.g., drastically elevated humidity levels and weakened airflow) substantially increased PM2.5 concentrations in northern China: the most substantial increases were in the Beijing–Tianjin–Hebei region (e.g., by 26.79 μg/m3 in Beijing). On excluding the meteorological effects, PM2.5 concentrations substantially decreased across China (e.g., by 21.84 μg/m3 in Beijing), evidencing that the strict restrictions on human activities indeed decreased PM2.5 concentrations. The unfavorable meteorological conditions, however, overwhelmed the beneficial effects of emission reduction, causing the severe haze pollution. These results indicate that the integrated meteorological effects should be considered to differentiate the meteorological and anthropogenic effects on severe air pollution.

9.
Int J Infect Dis ; 102: 247-253, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1059688

ABSTRACT

BACKGROUND: To evaluate and compare the effectiveness of four types of non-pharmaceutical interventions (NPIs) to contain the time-varying effective reproduction number (Rt) of coronavirus disease-2019 (COVID-19). METHODS: This study included 1,908,197 confirmed COVID-19 cases from 190 countries between 23 January and 13 April 2020. The implemented NPIs were categorised into four types: mandatory face mask in public, isolation or quarantine, social distancing and traffic restriction (referred to as mandatory mask, quarantine, distancing and traffic hereafter, respectively). RESULTS: The implementations of mandatory mask, quarantine, distancing and traffic were associated with changes (95% confidence interval, CI) of -15.14% (from -21.79% to -7.93%), -11.40% (from -13.66% to -9.07%), -42.94% (from -44.24% to -41.60%) and -9.26% (from -11.46% to -7.01%) in the Rt of COVID-19 when compared with those without the implementation of the corresponding measures. Distancing and the simultaneous implementation of two or more types of NPIs seemed to be associated with a greater decrease in the Rt of COVID-19. CONCLUSION: Our study indicates that NPIs can significantly contain the COVID-19 pandemic. Distancing and the simultaneous implementation of two or more NPIs should be the strategic priorities for containing COVID-19.


Subject(s)
COVID-19/prevention & control , SARS-CoV-2 , Humans , Masks , Physical Distancing , Quarantine , Time Factors , Travel
10.
Sci Total Environ ; 757: 143783, 2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-939257

ABSTRACT

Novel corona virus disease 2019 (COVID-19), which first emerged in December 2019, has become a pandemic. This study aimed to investigate the associations between meteorological factors and COVID-19 incidence and mortality worldwide. This study included 1,908,197 confirmed cases of and 119,257 deaths from COVID-19 from 190 countries between 23 January and 13 April, 2020. We used a distributed lag non-linear model with city-/country-level random intercept to investigate the associations between COVID19 incidence and daily temperature, relative humidity, and wind speed. A series of confounders were considered in the analysis including demographics, socioeconomics, geographic locations, and political strategies. Sensitivity analyses were performed to examine the robustness of the associations. The COVID-19 incidence showed a stronger association with temperature than with relative humidity or wind speed. An inverse association was identified between the COVID-19 incidence and temperature. The corresponding 14-day cumulative relative risk was 1.28 [95% confidence interval (CI), 1.20-1.36] at 5 °C, and 0.75 (95% CI, 0.65-0.86) at 22 °C with reference to the risk at 11 °C. An inverse J-shaped association was observed between relative humidity and the COVID-19 incidence, with the highest risk at 72%. A higher wind speed was associated with a generally lower incidence of COVID-19, although the associations were weak. Sensitivity analyses generally yielded similar results. The COVID-19 incidence decreased with the increase of temperature. Our study suggests that the spread of COVID-19 may slow during summer but may increase during winter.


Subject(s)
COVID-19 , China , Cities , Humans , Humidity , Incidence , Meteorological Concepts , SARS-CoV-2 , Temperature
11.
Eur J Clin Microbiol Infect Dis ; 40(5): 921-928, 2021 May.
Article in English | MEDLINE | ID: covidwho-921757

ABSTRACT

Serological test is a valuable diagnostic tool for coronavirus disease 2019 (COVID-19). However, considerable improvements to these tests are needed, especially in the detection sensitivity. In this study, six recombinant nucleocapsid and spike proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were prepared and evaluated, including three prokaryotic expression nucleocapsid proteins (rN, rN1, rN2) and three eukaryotic expression spike proteins (rS1, rS-RBD, rS-RBD-mFc). The recombinant proteins with the highest ELISA titers (rS1 and rS-RBD-mFc) were selected to develop a double-antigen sandwich colloidal gold immunochromatography assay (GICA) to detect total antibodies against SARS-CoV-2. The clinical evaluation results showed that the sensitivity and specificity of GICA were 92.09% (419/455) and 99.44% (706/710), respectively. Moreover, a significant number (65.63%, 21/32) of COVID-19 patients with undetectable viral RNA were correctly diagnosed by the GICA method. In conclusion, the eukaryotic expression spike proteins (rS1 and rS-RBD-mFc) are more suitable than the prokaryotic expression nucleocapsid proteins for serological diagnosis of SARS-CoV-2. The proposed GICA for detection of total antibodies could be a powerful complement to the current RNA tests for COVID-19.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , COVID-19/blood , COVID-19 Nucleic Acid Testing , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunoassay , Phosphoproteins/genetics , Phosphoproteins/immunology , RNA, Viral/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics
12.
Sci Total Environ ; 737: 140348, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-610882

ABSTRACT

The novel coronavirus disease 2019 (COVID-19), which first emerged in Hubei province, China, has become a pandemic. However, data regarding the effects of meteorological factors on its transmission are limited and inconsistent. A mechanism-based parameterisation scheme was developed to investigate the association between the scaled transmission rate (STR) of COVID-19 and the meteorological parameters in 20 provinces/municipalities located on the plains in China. We obtained information on the scale of population migrated from Wuhan, the world epicentre of the COVID-19 outbreak, into the study provinces/municipalities using mobile-phone positioning system and big data techniques. The highest STRs were found in densely populated metropolitan areas and in cold provinces located in north-eastern China. Population density had a non-linear relationship with disease spread (linearity index, 0.9). Among various meteorological factors, only temperature was significantly associated with the STR after controlling for the effect of population density. A negative and exponential relationship was identified between the transmission rate and the temperature (correlation coefficient, -0.56; 99% confidence level). The STR increased substantially as the temperature in north-eastern China decreased below 0 °C (the STR ranged from 3.5 to 12.3 when the temperature was between -9.41 °C and -13.87 °C), whilst the STR showed less temperature dependence in the study areas with temperate weather conditions (the STR was 1.21 ± 0.57 when the temperature was above 0 °C). Therefore, a higher population density was linearly whereas a lower temperature (<0 °C) was exponentially associated with an increased transmission rate of COVID-19. These findings suggest that the mitigation of COVID-19 spread in densely populated and/or cold regions will be a great challenge.


Subject(s)
Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , China , Cities , Humans , Meteorological Concepts , SARS-CoV-2
13.
Natl Sci Rev ; 7(9): 1428-1436, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-401795

ABSTRACT

Effective therapies are urgently needed for the SARS-CoV-2 pandemic. Chloroquine has been proved to have antiviral effect against coronavirus in vitro. In this study, we aimed to assess the efficacy and safety of chloroquine with different doses in COVID-19. In this multicenter prospective observational study, we enrolled patients older than 18 years old with confirmed SARS-CoV-2 infection excluding critical cases from 12 hospitals in Guangdong and Hubei Provinces. Eligible patients received chloroquine phosphate 500 mg, orally, once (half dose) or twice (full dose) daily. Patients treated with non-chloroquine therapy were included as historical controls. The primary endpoint is the time to undetectable viral RNA. Secondary outcomes include the proportion of patients with undetectable viral RNA by day 10 and 14, hospitalization time, duration of fever, and adverse events. A total of 197 patients completed chloroquine treatment, and 176 patients were included as historical controls. The median time to achieve an undetectable viral RNA was shorter in chloroquine than in non-chloroquine (absolute difference in medians -6.0 days; 95% CI -6.0 to -4.0). The duration of fever is shorter in chloroquine (geometric mean ratio 0.6; 95% CI 0.5 to 0.8). No serious adverse events were observed in the chloroquine group. Patients treated with half dose experienced lower rate of adverse events than with full dose. Although randomized trials are needed for further evaluation, this study provides evidence for safety and efficacy of chloroquine in COVID-19 and suggests that chloroquine can be a cost-effective therapy for combating the COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL