Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nat Commun ; 13(1): 4615, 2022 Aug 08.
Article in English | MEDLINE | ID: covidwho-1977997

ABSTRACT

Understanding the impact of age on vaccinations is essential for the design and delivery of vaccines against SARS-CoV-2. Here, we present findings from a comprehensive analysis of multiple compartments of the memory immune response in 312 individuals vaccinated with the BNT162b2 SARS-CoV-2 mRNA vaccine. Two vaccine doses induce high antibody and T cell responses in most individuals. However, antibody recognition of the Spike protein of the Delta and Omicron variants is less efficient than that of the ancestral Wuhan strain. Age-stratified analyses identify a group of low antibody responders where individuals ≥60 years are overrepresented. Waning of the antibody and cellular responses is observed in 30% of the vaccinees after 6 months. However, age does not influence the waning of these responses. Taken together, while individuals ≥60 years old take longer to acquire vaccine-induced immunity, they develop more sustained acquired immunity at 6 months post-vaccination. A third dose strongly boosts the low antibody responses in the older individuals against the ancestral Wuhan strain, Delta and Omicron variants.


Subject(s)
COVID-19 , Viral Vaccines , Aged , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Middle Aged , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
2.
Science ; : eabp8337, 2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-1962060

ABSTRACT

Understanding the circumstances that lead to pandemics is important for their prevention. Here, we analyze the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted A and B. Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October-8 December), while the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans prior to November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.

3.
Clin Infect Dis ; 2022 Mar 22.
Article in English | MEDLINE | ID: covidwho-1886379

ABSTRACT

BACKGROUND: The impact of SARS-CoV-2 vaccination status and paediatric age on transmission of the Delta variant is key to preventing COVID-19 spread. In Singapore, quarantine of all close-contacts, and quarantine-entry and exit PCR testing, enabled evaluation of these factors. METHODS: This retrospective cohort study included all household close-contacts between March 1, 2021 and August 31, 2021. Logistic regression using generalized estimating equations was used to determine risk factors associated with SARS-CoV-2 acquisition and symptomatic disease. FINDINGS: Among 8470 Delta variant-exposed household close-contacts linked to 2583 indices, full-vaccination of the index with BNT162b2 or mRNA-1273 was associated with significant reduction in SARS-CoV-2 acquisition by contacts (adjusted odds ratio [aOR]:0.56, 95% robust confidence interval [RCI]:0.44-0.71 and aOR:0.51, 95%RCI:0.27-0.96 respectively).Compared to young adults (18-29y), children (0-11y) were significantly more likely to transmit (aOR:2.37 [95%RCI:1.57-3.60]) and acquire (aOR:1.43 [95%RCI:1.07-1.93]) infection, taking into account vaccination status.Longer duration from completion of vaccination among contacts was associated with decline in protection against acquisition (first-month aOR:0.42, 95%RCI:0.33-0.55; fifth-month aOR:0.84, 95%RCI:0.55-0.98; p<0.0001 for trend) and symptomatic disease (first-month aOR:0.30, 95%RCI:0.23-0.41; fifth-month aOR;0.62, 95%RCI:0.38-1.02; p<0.0001 for trend). Contacts immunized with mRNA-1273 had significant reduction in acquisition (aOR:0.73, 95%RCI:0.58-0.91) compared to BNT162b2. CONCLUSIONS: Among household close-contacts, vaccination prevented onward SARS-CoV-2 transmission and there was increased risk of SARS-CoV-2 acquisition and transmission among children compared with young adults. Time after completion of vaccination and vaccine type affected SARS-CoV-2 acquisition.

4.
SSRN; 2022.
Preprint in English | SSRN | ID: ppcovidwho-330621

ABSTRACT

Background: Waning antibody levels post-vaccination and the emergence of variants of concern (VOCs) capable of evading protective immunity has raised the need for booster vaccinations. However, which combination of COVID-19 vaccines offers the strongest immune response against Omicron variant is unknown. Methods: This randomized, subject-blinded, controlled trial assess the reactogenicity and immunogenicity of different COVID-19 vaccine booster combinations. 100 BNT162b2-vaccinated individuals were enrolled and randomized 1:1 to either homologous (BNT162b2+BNT162b2+BNT162b2;‘BBB’) or heterologous mRNA booster vaccine (BNT162b2+BNT162b2+mRNA-1273;‘BBM’). Primary endpoint was the level of neutralizing antibodies against SARS-CoV-2 wild-type and VOCs at Day 28. Results: 51 participants were allocated to BBB and 49 to BBM;50 and 48 respectively were analyzed for safety and immunogenicity outcomes. At Day 28 post-boost, mean SARS-CoV-2 spike antibody titers were lower with BBB (22,382 IU/mL 95% CI, 18,210 to 27,517) vs BBM (29,751 IU/mL 95% CI, 25,281 to 35,011, p=0·034) as was the median level of neutralizing antibodies: BBB 99.0% (IQR 97·9 to 99·3%) vs BBM 99.3% (IQR 98·8 to 99·5%, p=0·021). On sub-group analysis, significant differences in mean spike antibody titer and live Omicron neutralization titer was only observed in older adults. Median surrogate neutralizing antibody level against all VOCs was also significantly higher with BBM in older adults, and against Omicron was BBB 72·8% (IQR 54·0 to 84·7%) vs BBM 84·3% (IQR 78·1 to 88·7%, p=0·0073). Both vaccines were well tolerated. Conclusions: Heterologous mRNA-1273 booster vaccination induced a stronger neutralizing response against the Omicron variant in older individuals compared with homologous BNT123b2.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318385

ABSTRACT

Background: The impact of SARS-CoV-2 variants of concern (VOCs) on disease severity is unclear. In this retrospective cohort study, we compared outcomes of patients infected with B.1.1.7, B.1.351, and B.1.617.2 with those with wild-type strains from early 2020.Methods: National surveillance data from 1-January-2021 to 22-May-2021 were obtained from the Ministry of Health, and outcomes in relation to VOC were explored. Detailed patient level data from all SARS-CoV-2 patients with VOC infection admitted to our centre between 20-December-2020 and 12-May-2021 were analysed. Outcomes were compared with a cohort of 846 patients admitted January-April 2020.Findings: There were 838 VOC infections in Singapore in the study period. After adjusting for age and gender, B.1.617.2 infection was associated with higher odds of oxygen requirement, ICU admission, or death (adjusted odds ratio (aOR) 4·90, [95% CI 1·43-30·78]. 157 patients with VOCs were admitted to our centre. After adjusting for age, gender, comorbidities, and vaccination, aOR for pneumonia with B.1.617.2 was 1·88 [95% CI 0·95-3·76]) compared with wild-type. B.1.617.2 was associated with significantly lower PCR Ct values and significantly longer duration of Ct value ≤30 (estimated median duration 18 days for B.1.617.2, 13 days for wild-type). Vaccine breakthrough cases were less severe.Interpretation: There was a signal toward increased severity associated with B.1.617.2. The association of B.1.617.2 with lower Ct value and longer viral shedding provides a potential mechanism for increased transmissibility. These findings provide a strong impetus for the rapid implementation of vaccination programmes.Funding Information: National Medical Research Council grants COVID19RF-001 and COVID19RF-008.Declaration of Interests: BEY reports personal fees from Roche and Sanofi, outside the submitted work. All other authors declare no competing interests.Ethics Approval Statement: Informed consent for retrospective data collection was waived as approved by the institutional review board (NHG-DSRB reference number 2020/01122).

6.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-328680

ABSTRACT

Background: On 26 November 2021, the World Health Organization designated the B.1.1.529 lineage of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as the fifth variant of concern, Omicron. Infections have quickly spread worldwide, but understanding of the viral dynamics and the cytokine and cellular immunological response during infection remain limited. Methods: Detailed patient-level data from 174 age-matched patients with sequence confirmed Omicron or Delta infection admitted to the National Centre for Infectious Diseases, Singapore were analyzed in an observational cohort study. Peripheral blood samples for measurement of SARS-CoV-2 immunological parameters were obtained from a subset. Respiratory samples were collected for viral cultures and correlated to corresponding PCR cycle threshold (Ct) values. Results: Omicron and Delta variant infections in this hospitalized cohort were mild with only 3 (3%) and 14 (16%) developing pneumonia respectively. Omicron infections were more likely to present with sore throat (46.0 vs x23.0%, p=0.005). Neutrophil counts and C-reactive protein (CRP) were significantly lower among the Omicron cohort (Median neutrophil 2.95 [IQR 2.16 – 3.96] vs 4.60 [IQR 3.76 – 6.10] x 10 9 /L , p<0.001;Median CRP 5.7 [IQR 2.0 – 10.0] vs 12.0 [IQR 6.1 – 22.0] mg/L, p<0.001). Trough polymerase chain reaction (PCR) cycle threshold (Ct) values were significantly higher with Omicron infection (17.6 [IQR 16.3 – 19.3] vs 14.9 [IQR 13.9 – 19.0], p=0.001). The pattern and rate of rise in Ct values was similar between Omicron and Delta. At the time of infection, Omicron infected patients had lower levels of pro-inflammatory cytokines Vaccine breakthrough infections with the Omicron variant had a low concentration of proinflammatory cytokines, chemokines, and growth factors at the acute phase of infection, but a more robust IFN-γ response. Less dysregulated immune cell profiles were also observed, including a lower immature neutrophil cell count in Omicron breakthrough cases Conclusions: Omicron infections resulted in mild vaccine breakthrough illness in the majority of patients. Compared with Delta, Omicron infections were more frequently associated with upper respiratory tract infections, had lower viral loads, lower levels of pro-inflammatory cytokines and less dysregulated immune cell profiles.

7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-324729

ABSTRACT

Background: Host determinants of severe coronavirus disease 2019 include advanced age, comorbidities and male sex. Virologic factors may also be important in determining clinical outcome and transmission rates, but limited patient-level data is available. Methods: We conducted an observational cohort study at seven public hospitals in Singapore. Clinical and laboratory data were collected and compared between individuals infected with different SARS-CoV-2 clades. Firth’s logistic regression was used to examine the association between SARS-CoV-2 clade and development of hypoxia, and quasi-Poisson regression to compare transmission rates. Plasma samples were tested for immune mediator levels and the kinetics of viral replication in cell culture were compared. Findings: 319 patients with PCR-confirmed SARS-CoV-2 infection had clinical and virologic data available for analysis. 29 (9%) were infected with clade S, 90 (28%) with clade L/V, 96 (30%) with clade G (containing D614G variant), and 104 (33%) with other clades ‘O’ were assigned to lineage B.6. After adjusting for age and other covariates, infections with clade S (adjusted odds ratio (aOR) 0·030 (95% confidence intervals (CI): 0·0002-0·29)) or clade O (B·6) (aOR 0·26 (95% CI 0·064-0·93)) were associated with lower odds of developing hypoxia requiring supplemental oxygen compared with clade L/V. Patients infected with clade L/V had more pronounced systemic inflammation with higher concentrations of pro-inflammatory cytokines, chemokines and growth factors. No significant difference in the severity of clade G infections was observed (aOR 0·95 (95% CI: 0·35-2·52). Though viral loads were significantly higher, there was no evidence of increased transmissibility of clade G, and replicative fitness in cell culture was similar for all clades. Interpretation: Infection with clades L/V was associated with increased severity and more systemic release of pro-inflammatory cytokines. Infection with clade G was not associated with changes in severity, and despite higher viral loads there was no evidence of increased transmissibility.Funding Statement: This study was funded by grants from the Singapore National Medical Research Council (COVID19RF- 001, COVID19RF2-0001, COVID19RF-007, and COVID19RF-60) and Biomedical Research Council (project number H20/04/g1/006).Declaration of Interests: No conflicts of interest declared.Ethics Approval Statement: The epidemiological investigation was conducted under the Infectious Diseases Act (Singapore). Study protocols were approved by ethics committees of the National Healthcare Group and SingHealth. Written informed consent was obtained from participants for clinical data and biological sample collection as part of the PROTECT study (2012/00917;2018/3045). A waiver of informed consent for retrospective data collection only was granted for individuals admitted to the National Centre of Infectious Diseases (2020/01122). Healthy donor samples were collected under study numbers 2017/2806 and NUS IRB 04-140.

8.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-312783

ABSTRACT

Background: To determine the utility of chest radiography (CXR) for assessing and prognosticating COVID-19 disease with an objective radiographic scoring system. Methods: A multicenter, prospective study was conducted, forty patients were included. Seventy-eight CXR’s were performed on the first derivation cohort of twenty patients with COVID-19 (median age 47.5 years, 10 females and four with comorbidities) admitted between 22 January 2020 and 1 February 2020. Each CXR was scored by three radiologists in consensus and graded on a 72-point COVID-19 Radiographic Score (CRS). This was correlated with supplemental oxygen requirement, C-reactive protein (CRP), lactate dehydrogenase (LDH) and lymphocyte count. To validate our findings, the parameters of another validation cohort of twenty patients with 65 CXRs were analysed. Results: In the derivation cohort, seven patients needed supplemental oxygen and one was intubated for mechanical ventilation with no death. The maximum CRS was significantly different between patients on and not on supplemental oxygen (p=<.001). There was strong correlation between maximum CRS and lowest oxygen saturation (r= -.849), maximum CRP (r= .832) and maximum LDH (r= .873). These findings were consistent in the validation cohort. An increment of 2 points in CRS had an accuracy of 0.938 with 100.0% sensitivity (95% CI 100.0-100.0) and 83.3% (95% CI 65.1-100.0) specificity in predicting supplemental oxygen requirement. Conclusion: Using an objective scoring system (CRS), the degree of abnormalities on CXR correlates closely with known markers of disease severity. CRS may further be applied to predict patients who require oxygen supplementation during the course of their disease.

9.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-311275

ABSTRACT

Early detection of infections is crucial to limit the spread of coronavirus 2019 disease (COVID-19). Here, we developed a flow cytometry-based assay to detect SARS-CoV-2 Spike protein (S protein) antibodies in COVID-19 patients. The assay detected specific IgM and IgG in COVID-19 patients and also the acquisition of all IgG subclasses, with IgG1 being the most dominant. The antibody response was significantly higher at a later stage of the infection. Furthermore, asymptomatic COVID-19 patients also developed specific IgM and IgG, with IgG1 as the most dominant subclass. Although the antibody levels were lower in asymptomatic infections, the assay was highly sensitive and detected 97% of asymptomatic infections. These findings demonstrated that the assay could be used for serological analysis of symptomatic patients, and also as a sensitive tool to detect asymptomatic infections, which may go undetected.Funding: Biomedical Research Council (BMRC), the A*ccelerate GAP-funded project (ACCL/19-GAP064-R20H-H) from Agency of Science, Technology and Research (A*STAR), and National Medical Research Council (NMRC) COVID-19 Research fund (COVID19RF-001, COVID-19RF-007, COVID-19RF-60).Conflict of Interest: The authors declare no competing interests.Ethical Approval: The study design and protocols for COVID-19, recovered SARS and seasonal human CoV patient cohorts were approved by National Healthcare Group (NHG) Domain Specific Review Board (DSRB) and performed, following ethical guidelines in the approved studies 2012/00917, 2020/00091 and 2020/00076 respectively. Healthy donor samples were collected in accordance with approved studies 2017/2806 and NUS IRB 04-140. Written informed consent was obtained from participants in accordance with the Declaration of Helsinki for Human Research.

10.
Viruses ; 14(2)2022 01 24.
Article in English | MEDLINE | ID: covidwho-1648557

ABSTRACT

The constant mutation of SARS-CoV-2 has led to the emergence of new variants, which call for urgent effective therapeutic interventions. The trimeric spike (S) protein of SARS-CoV-2 is highly immunogenic with the receptor-binding domain (RBD) that binds first to the cellular receptor angiotensin-converting enzyme 2 (ACE2) and is therefore the target of many neutralizing antibodies. In this study, we characterized a broadly neutralizing monoclonal antibody (mAb) 9G8, which shows potent neutralization against the authentic SARS-CoV-2 wild-type (WT), Alpha (B.1.1.7), and Delta (1.617.2) viruses. Furthermore, mAb 9G8 also displayed a prominent neutralizing efficacy in the SARS-CoV-2 surrogate virus neutralization test (sVNT) against the Epsilon (B.1.429/7), Kappa (B.1.617.1), Gamma (P.1), Beta (B.1.351), and Delta Plus (1.617.2.1) RBD variants in addition to the variants mentioned above. Based on our in vitro escape mutant studies, we proved that the mutations V483F and Y489H within the RBD were involved in ACE2 binding and caused the neutralizing evasion of the virus from mAb 9G8. The development of such a cross-reactive neutralizing antibody against majority of the SARS-CoV-2 variants provides an important insight into pursuing future therapeutic agents for the prevention and treatment of COVID-19.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Serine-Arginine Splicing Factors/immunology , Animals , COVID-19/therapy , COVID-19/virology , Chlorocebus aethiops , Cross Reactions , Epitopes/genetics , Epitopes/immunology , Humans , Mice , Mice, Inbred BALB C , Neutralization Tests , Protein Binding , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/therapeutic use , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
11.
mBio ; : e0343621, 2022 Jan 18.
Article in English | MEDLINE | ID: covidwho-1632479

ABSTRACT

The dynamics of SARS-CoV-2 infection in COVID-19 patients are highly variable, with a subset of patients demonstrating prolonged virus shedding, which poses a significant challenge for disease management and transmission control. In this study, the long-term dynamics of SARS-CoV-2 infection were investigated using a human well-differentiated nasal epithelial cell (NEC) model of infection. NECs were observed to release SARS-CoV-2 virus onto the apical surface for up to 28 days postinfection (dpi), further corroborated by viral antigen staining. Single-cell transcriptome sequencing (sc-seq) was utilized to explore the host response from infected NECs after short-term (3-dpi) and long-term (28-dpi) infection. We identified a unique population of cells harboring high viral loads present at both 3 and 28 dpi, characterized by expression of cell stress-related genes DDIT3 and ATF3 and enriched for genes involved in tumor necrosis factor alpha (TNF-α) signaling and apoptosis. Remarkably, this sc-seq analysis revealed an antiviral gene signature within all NEC cell types even at 28 dpi. We demonstrate increased replication of basal cells, absence of widespread cell death within the epithelial monolayer, and the ability of SARS-CoV-2 to replicate despite a continuous interferon response as factors likely contributing to SARS-CoV-2 persistence. This study provides a model system for development of therapeutics aimed at improving viral clearance in immunocompromised patients and implies a crucial role for immune cells in mediating viral clearance from infected epithelia. IMPORTANCE Increasing medical attention has been drawn to the persistence of symptoms (long-COVID syndrome) or live virus shedding from subsets of COVID-19 patients weeks to months after the initial onset of symptoms. In vitro approaches to model viral or symptom persistence are needed to fully dissect the complex and likely varied mechanisms underlying these clinical observations. We show that in vitro differentiated human NECs are persistently infected with SARS-CoV-2 for up to 28 dpi. This viral replication occurred despite the presence of an antiviral gene signature across all NEC cell types even at 28 dpi. This indicates that epithelial cell intrinsic antiviral responses are insufficient for the clearance of SARS-CoV-2, implying an essential role for tissue-resident and infiltrating immune cells for eventual viral clearance from infected airway tissue in COVID-19 patients.

12.
Clin Microbiol Infect ; 28(4): 612.e1-612.e7, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1604269

ABSTRACT

OBJECTIVES: Highly effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed but variants of concerns are worrisome, especially B.1.617.2 (Delta) which has rapidly spread across the world. We aim to study if vaccination alters virological and serological kinetics in breakthrough infections. METHODS: We conducted a multicentre retrospective cohort study of patients in Singapore who had received a licensed mRNA vaccine and been admitted to hospital with B.1.617.2 SARS-CoV-2 infection. We compared clinical features, virological and serological kinetics (anti-nucleocapsid, anti-spike and surrogate virus neutralization titres) between fully vaccinated and unvaccinated individuals. RESULTS: Out of 218 individuals with B.1.617.2 infection, 84 received an mRNA vaccine of which 71 were fully vaccinated, 130 were unvaccinated and four received a non-mRNA vaccine. Despite significantly older age in the vaccine breakthrough group, only 2.8% (2/71) developed severe COVID-19 requiring oxygen supplementation compared with 53.1% (69/130) in the unvaccinated group (p < 0.001). Odds of severe COVID-19 following vaccination were significantly lower (adjusted odds ratio 0.07 95% CI 0.015-0.335, p 0.001). PCR cycle threshold values were similar between vaccinated and unvaccinated groups at diagnosis, but viral loads decreased faster in vaccinated individuals. Early, robust boosting of anti-spike protein antibodies was observed in vaccinated patients; however, these titres were significantly lower against B.1.617.2 than the wildtype vaccine strain. DISCUSSION: The mRNA vaccines are highly effective at preventing symptomatic and severe COVID-19 associated with B.1.617.2 infection. Vaccination is associated with faster decline in viral RNA load and a robust serological response. Vaccination remains a key strategy for control of the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Cohort Studies , Humans , Kinetics , Pandemics , Retrospective Studies , SARS-CoV-2/genetics , Vaccination , Vaccines, Synthetic
13.
Lancet Reg Health West Pac ; 17: 100299, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1506512

ABSTRACT

BACKGROUND: Impact of the Delta variant and vaccination on SARS-CoV-2 transmission remains unclear. In Singapore, quarantine of all close contacts, including entry and exit PCR testing, provided the opportunity to determine risk of infection by the Delta variant compared to other variants, vaccine efficacy against SARS-CoV-2 acquisition, symptomatic or severe COVID-19, and risk factors associated with SARS-CoV-2 acquisition and symptomatic disease. METHODS: This retrospective cohort study included all close contacts between September 1, 2020 and May 31, 2021. Regardless of symptoms, all were quarantined for 14 days with entry and exit PCR testing. Household contacts were defined as individuals who shared a residence with a Covid-19 index case. Secondary attack rates among household close contacts of Delta variant-infected indexes and other variant-infected indexes were derived from prevalence of diagnosed cases among contacts. Relative risk ratios and bootstrapping at the cluster level was used to determine risk of infection by the Delta variant compared to other variants and vaccine efficacy against SARS-CoV-2 acquisition, symptomatic or severe COVID-19. Logistic regression using generalized estimating equations was used to determine risk factors associated with SARS-CoV-2 acquisition and symptomatic disease. FINDINGS: Of 1024 household contacts linked to 301 PCR-confirmed index cases, 753 (73.5%) were linked to Delta-infected indexes and 248 (24.2%) were exposed to indexes with other variants. Household secondary attack rate among unvaccinated Delta-exposed contacts was 25.8% (95% boostrap confidence interval [BCI] 20.6-31.5%) compared with 12.9% (95%BCI 7.0-20.0%) among other variant-exposed contacts. Unvaccinated Delta-exposed contacts were more likely to be infected than those exposed to other variants (Relative risk 2.01, 95%CI 1.24-3.84). Among Delta-exposed contacts, complete vaccination had a vaccine effectiveness of 56.4% (95%BCI 32.6-75.8%) against acquisition, 64.1% (95%BCI 37.8-85.4%) against symptomatic disease and 100% against severe disease. Among Delta-exposed contacts, vaccination status (adjusted odds ratio [aOR] 0.33, 95% robust confidence interval [RCI] 0.17-0.63) and older age of the index (aOR 1.20 per decade, 95%RCI 1.03-1.39) was associated with increased risk of SARS-CoV-2 acquisition by the contact. Vaccination status of the index was not associated with a statistically-significant difference for contact SARS-CoV-2 acquisition (aOR 0.73, 95%RCI 0.38-1.40). INTERPRETATION: Increased risk of SARS-CoV-2 Delta acquisition compared with other variants was reduced with vaccination. Close-contacts of vaccinated Delta-infected indexes did not have statistically significant reduced risk of acquisition compared with unvaccinated Delta-infected indexes.

14.
Clin Infect Dis ; 73(9): e2932-e2942, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500989

ABSTRACT

BACKGROUND: Key knowledge gaps remain in the understanding of viral dynamics and immune response of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. METHODS: We evaluated these characteristics and established their association with clinical severity in a prospective observational cohort study of 100 patients with PCR-confirmed SARS-CoV-2 infection (mean age, 46 years; 56% male; 38% with comorbidities). Respiratory samples (n = 74) were collected for viral culture, serum samples for measurement of IgM/IgG levels (n = 30), and plasma samples for levels of inflammatory cytokines and chemokines (n = 81). Disease severity was correlated with results from viral culture, serologic testing, and immune markers. RESULTS: Fifty-seven (57%) patients developed viral pneumonia, of whom 20 (20%) required supplemental oxygen, including 12 (12%) with invasive mechanical ventilation. Viral culture from respiratory samples was positive for 19 of 74 patients (26%). No virus was isolated when the PCR cycle threshold (Ct) value was >30 or >14 days after symptom onset. Seroconversion occurred at a median (IQR) of 12.5 (9-18) days for IgM and 15.0 (12-20) days for IgG; 54/62 patients (87.1%) sampled at day 14 or later seroconverted. Severe infections were associated with earlier seroconversion and higher peak IgM and IgG levels. Levels of IP-10, HGF, IL-6, MCP-1, MIP-1α, IL-12p70, IL-18, VEGF-A, PDGF-BB, and IL-1RA significantly correlated with disease severity. CONCLUSIONS: We found virus viability was associated with lower PCR Ct value in early illness. A stronger antibody response was associated with disease severity. The overactive proinflammatory immune signatures offer targets for host-directed immunotherapy, which should be evaluated in randomized controlled trials.


Subject(s)
COVID-19 , Pneumonia, Viral , Antibodies, Viral , Female , Humans , Immunoglobulin M , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Seroconversion
16.
EBioMedicine ; 66: 103319, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1174196

ABSTRACT

BACKGROUND: Host determinants of severe coronavirus disease 2019 include advanced age, comorbidities and male sex. Virologic factors may also be important in determining clinical outcome and transmission rates, but limited patient-level data is available. METHODS: We conducted an observational cohort study at seven public hospitals in Singapore. Clinical and laboratory data were collected and compared between individuals infected with different SARS-CoV-2 clades. Firth's logistic regression was used to examine the association between SARS-CoV-2 clade and development of hypoxia, and quasi-Poisson regression to compare transmission rates. Plasma samples were tested for immune mediator levels and the kinetics of viral replication in cell culture were compared. FINDINGS: 319 patients with PCR-confirmed SARS-CoV-2 infection had clinical and virologic data available for analysis. 29 (9%) were infected with clade S, 90 (28%) with clade L/V, 96 (30%) with clade G (containing D614G variant), and 104 (33%) with other clades 'O' were assigned to lineage B.6. After adjusting for age and other covariates, infections with clade S (adjusted odds ratio (aOR) 0·030 (95% confidence intervals (CI): 0·0002-0·29)) or clade O (B·6) (aOR 0·26 (95% CI 0·064-0·93)) were associated with lower odds of developing hypoxia requiring supplemental oxygen compared with clade L/V. Patients infected with clade L/V had more pronounced systemic inflammation with higher concentrations of pro-inflammatory cytokines, chemokines and growth factors. No significant difference in the severity of clade G infections was observed (aOR 0·95 (95% CI: 0·35-2·52). Though viral loads were significantly higher, there was no evidence of increased transmissibility of clade G, and replicative fitness in cell culture was similar for all clades. INTERPRETATION: Infection with clades L/V was associated with increased severity and more systemic release of pro-inflammatory cytokines. Infection with clade G was not associated with changes in severity, and despite higher viral loads there was no evidence of increased transmissibility.


Subject(s)
COVID-19/etiology , COVID-19/transmission , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Adult , Age Factors , Aged , COVID-19/epidemiology , COVID-19/immunology , Comorbidity , Female , Humans , Hypoxia/therapy , Hypoxia/virology , Male , Middle Aged , Singapore/epidemiology , Viral Load
17.
Cell Rep Med ; 2(2): 100193, 2021 02 16.
Article in English | MEDLINE | ID: covidwho-1069040

ABSTRACT

Early detection of infection is crucial to limit the spread of coronavirus disease 2019 (COVID-19). Here we develop a flow cytometry-based assay to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein antibodies in individuals with COVID-19. The assay detects specific immunoglobulin M (IgM), IgA, and IgG in individuals with COVID-19 and also acquisition of all IgG subclasses, with IgG1 being the most dominant. The antibody response is significantly higher at a later stage of infection. Furthermore, asymptomatic individuals with COVID-19 also develop specific IgM, IgA, and IgG, with IgG1 being the most dominant subclass. Although the antibody levels are lower in asymptomatic infection, the assay is highly sensitive and detects 97% of asymptomatic infections. These findings demonstrate that the assay can be used for serological analysis of symptomatic and asymptomatic infections, which may otherwise remain undetected.


Subject(s)
Antibodies, Viral/blood , COVID-19/pathology , Immunoglobulin Class Switching/physiology , Immunoglobulin G/blood , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/immunology , Asymptomatic Diseases , COVID-19/immunology , COVID-19/virology , Flow Cytometry , Humans , Immunoglobulin G/immunology , Immunologic Tests/methods , SARS-CoV-2/isolation & purification
18.
Euro Surveill ; 25(28)2020 07.
Article in English | MEDLINE | ID: covidwho-874407

ABSTRACT

BackgroundA novel coronavirus, SARS-CoV-2, which emerged at the end of 2019 and causes COVID-19, has resulted in worldwide human infections. While genetically distinct, SARS-CoV-1, the aetiological agent responsible for an outbreak of severe acute respiratory syndrome (SARS) in 2002-2003, utilises the same host cell receptor as SARS-CoV-2 for entry: angiotensin-converting enzyme 2 (ACE2). Parts of the SARS-CoV-1 spike glycoprotein (S protein), which interacts with ACE2, appear conserved in SARS-CoV-2.AimThe cross-reactivity with SARS-CoV-2 of monoclonal antibodies (mAbs) previously generated against the S protein of SARS-CoV-1 was assessed.MethodsThe SARS-CoV-2 S protein sequence was aligned to those of SARS-CoV-1, Middle East respiratory syndrome (MERS) and common-cold coronaviruses. Abilities of mAbs generated against SARS-CoV-1 S protein to bind SARS-CoV-2 or its S protein were tested with SARS-CoV-2 infected cells as well as cells expressing either the full length protein or a fragment of its S2 subunit. Quantitative ELISA was also performed to compare binding of mAbs to recombinant S protein.ResultsAn immunogenic domain in the S2 subunit of SARS-CoV-1 S protein is highly conserved in SARS-CoV-2 but not in MERS and human common-cold coronaviruses. Four murine mAbs raised against this immunogenic fragment could recognise SARS-CoV-2 S protein expressed in mammalian cell lines. In particular, mAb 1A9 was demonstrated to detect S protein in SARS-CoV-2-infected cells and is suitable for use in a sandwich ELISA format.ConclusionThe cross-reactive mAbs may serve as useful tools for SARS-CoV-2 research and for the development of diagnostic assays for COVID-19.


Subject(s)
Antibodies, Monoclonal/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , SARS Virus/immunology , Severe Acute Respiratory Syndrome/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/genetics , Blotting, Western , COS Cells , COVID-19 , Chlorocebus aethiops , Conserved Sequence , Coronavirus Infections/genetics , Coronavirus Infections/virology , Cross Reactions/immunology , Enzyme-Linked Immunosorbent Assay/methods , Fluorescent Antibody Technique/methods , Genome, Viral , Mice , Pandemics , Peptidyl-Dipeptidase A/immunology , Plasmids , Pneumonia, Viral/genetics , Recombinant Proteins/immunology , SARS Virus/genetics , SARS-CoV-2 , Sequence Alignment , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/genetics , Transfection , Vero Cells , Virus Integration
20.
Lancet ; 396(10251): 603-611, 2020 08 29.
Article in English | MEDLINE | ID: covidwho-719049

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with a 382-nucleotide deletion (∆382) in the open reading frame 8 (ORF8) region of the genome have been detected in Singapore and other countries. We investigated the effect of this deletion on the clinical features of infection. METHODS: We retrospectively identified patients who had been screened for the ∆382 variant and recruited to the PROTECT study-a prospective observational cohort study conducted at seven public hospitals in Singapore. We collected clinical, laboratory, and radiological data from patients' electronic medical records and serial blood and respiratory samples taken during hospitalisation and after discharge. Individuals infected with the ∆382 variant were compared with those infected with wild-type SARS-CoV-2. Exact logistic regression was used to examine the association between the infection groups and the development of hypoxia requiring supplemental oxygen (an indicator of severe COVID-19, the primary endpoint). Follow-up for the study's primary endpoint is completed. FINDINGS: Between Jan 22 and March 21, 2020, 278 patients with PCR-confirmed SARS-CoV-2 infection were screened for the ∆382 deletion and 131 were enrolled onto the study, of whom 92 (70%) were infected with the wild-type virus, ten (8%) had a mix of wild-type and ∆382-variant viruses, and 29 (22%) had only the ∆382 variant. Development of hypoxia requiring supplemental oxygen was less frequent in the ∆382 variant group (0 [0%] of 29 patients) than in the wild-type only group (26 [28%] of 92; absolute difference 28% [95% CI 14-28]). After adjusting for age and presence of comorbidities, infection with the ∆382 variant only was associated with lower odds of developing hypoxia requiring supplemental oxygen (adjusted odds ratio 0·07 [95% CI 0·00-0·48]) compared with infection with wild-type virus only. INTERPRETATION: The ∆382 variant of SARS-CoV-2 seems to be associated with a milder infection. The observed clinical effects of deletions in ORF8 could have implications for the development of treatments and vaccines. FUNDING: National Medical Research Council Singapore.


Subject(s)
Coronavirus Infections/virology , Gene Deletion , Genome, Viral/genetics , Pneumonia, Viral/virology , Adult , Aged , Betacoronavirus , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Humans , Hypoxia/etiology , Hypoxia/therapy , Middle Aged , Open Reading Frames , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Prospective Studies , Respiratory Therapy , SARS-CoV-2 , Severity of Illness Index , Singapore/epidemiology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL