Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clin Chim Acta ; 524: 132-138, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1576025

ABSTRACT

BACKGROUND: Severe disease of COVID-19 and mortality occur more frequently in male patients than that in female patients may be related to testosterone level. However, the diagnostic value of changes in the level of testosterone in predicting severe disease of male COVID-19 patients has not been determined yet. METHODS: Sixty-one male COVID-19 patients admitted to the First Affiliated Hospital of Zhejiang University School of Medicine were enrolled. Serum samples at different stages of the patients after admission were collected and testosterone levels were detected to analyze the correlation between testosterone level and disease severity. Transcriptome analysis of PBMC was performed in 34 patients. RESULTS: Testosterone levels at admission in male non-ICU COVID-19 patients (3.7 nmol/L, IQR: 1.5 âˆ¼ 4.7) were significantly lower than those in male ICU COVID-19 patients (6.7 nmol/L, IQR: 4.2 âˆ¼ 8.7). Testosterone levels in the non-ICU group increased gradually during the progression of the disease, while those in the ICU group remained low. In addition, testosterone level of enrolled patients in the second week after onset was significantly correlated with the severity of pneumonia, and ROC curve showed that testosterone level in the second week after onset was highly effective in predicting the severity of COVID-19. Transcriptome studies have found that testosterone levels of COVID-19 patients were associated with immune response, including T cell activation and regulation of lymphocyte activation. In addition, CD28 and Inositol Polyphosphate-4-Phosphatase Type II B (INPP4B) were found positively correlated with testosterone. CONCLUSIONS: Serum testosterone is an independent risk factor for predicting the severity of COVID-19 in male patients, and the level of serum testosterone in the second week after onset is valuable for evaluating the severity of COVID-19. Testosterone level is associated with T cell immune activation. The monitoring of serum testosterone should be highlighted in clinical treatment and the related mechanism should be further studied.


Subject(s)
COVID-19 , Testosterone , Female , Gene Expression Profiling , Humans , Immunity , Leukocytes, Mononuclear , Male , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes
3.
Micromachines (Basel) ; 12(6)2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1295882

ABSTRACT

Respiratory viral infections threaten human life and inflict an enormous healthcare burden worldwide. Frequent monitoring of viral antibodies and viral load can effectively help to control the spread of the virus and make timely interventions. However, current methods for detecting viral load require dedicated personnel and are time-consuming. Additionally, COVID-19 detection is generally relied on an automated PCR analyzer, which is highly instrument-dependent and expensive. As such, emerging technologies in the development of respiratory viral load assays for point-of-care (POC) testing are urgently needed for viral screening. Recent advances in loop-mediated isothermal amplification (LAMP), biosensors, nanotechnology-based paper strips and microfluidics offer new strategies to develop a rapid, low-cost, and user-friendly respiratory viral monitoring platform. In this review, we summarized the traditional methods in respiratory virus detection and present the state-of-art technologies in the monitoring of respiratory virus at POC.

4.
J Clin Lab Anal ; 35(1): e23604, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-921730

ABSTRACT

BACKGROUND: The emergence and rapid spread of the deadly novel coronavirus disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a swiftly evolving public health crisis worldwide. SARS-CoV-2 infection is characterized by the development and progression of inflammatory responses. Hematological parameters, such as white blood cells (WBCs) and their subpopulations, red cell distribution width, platelet count, mean platelet volume, plateletcrit, and derived markers such as neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio, are established biomarkers of inflammatory responses. We aimed to investigate associations between hematological parameters and disease severity in patients with SARS-CoV-2 infection. METHODS: We retrospectively analyzed data from 68 patients with confirmed SARS-CoV-2 infection. Twenty-two patients had mild illness, and 46 had moderate or severe illness at the time of admission. Univariate and multivariate regression analyses were used to identify correlates of disease severity. The areas under receiver operating characteristic curves were calculated to estimate and compare the predictive values of different diagnostic markers. RESULTS: Mean lymphocyte and monocyte counts were lower while WBC counts, neutrophil counts, NLR, and PLR were higher in patients with severe disease compared with those with mild disease (all P < .01). Univariate analysis revealed that older age, high WBC counts, high neutrophil counts, high NLR, high PLR, low monocyte counts, and low lymphocyte counts were independent correlates of severe illness. Multivariate analysis identified high NLR as the only independent correlate of severe illness. Receiver operating characteristic curve analysis showed that NLR had the highest area under curve of all hematological parameters. CONCLUSION: Among hematological parameters, the NLR showed superior prediction of disease severity in patients with SARS-CoV-2 infection. Thus, the NLR could be a valuable parameter to complement conventional measures for identification of patients at high risk for severe disease.


Subject(s)
Biomarkers/blood , COVID-19/etiology , Adult , Aged , COVID-19/blood , Female , Humans , Leukocyte Count , Lymphocyte Count , Male , Middle Aged , Neutrophils , ROC Curve , Risk Factors
6.
Eur Respir J ; 56(2)2020 08.
Article in English | MEDLINE | ID: covidwho-744959

ABSTRACT

BACKGROUND: Timely diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a prerequisite for treatment and prevention. The serology characteristics and complement diagnosis value of the antibody test to RNA test need to be demonstrated. METHOD: Serial sera of 80 patients with PCR-confirmed coronavirus disease 2019 (COVID-19) were collected at the First Affiliated Hospital of Zhejiang University, Hangzhou, China. Total antibody (Ab), IgM and IgG antibodies against SARS-CoV-2 were detected, and the antibody dynamics during the infection were described. RESULTS: The seroconversion rates for Ab, IgM and IgG were 98.8%, 93.8% and 93.8%, respectively. The first detectible serology marker was Ab, followed by IgM and IgG, with a median seroconversion time of 15, 18 and 20 days post exposure (d.p.e.) or 9, 10 and 12 days post onset (d.p.o.), respectively. The antibody levels increased rapidly beginning at 6 d.p.o. and were accompanied by a decline in viral load. For patients in the early stage of illness (0-7 d.p.o), Ab showed the highest sensitivity (64.1%) compared with IgM and IgG (33.3% for both; p<0.001). The sensitivities of Ab, IgM and IgG increased to 100%, 96.7% and 93.3%, respectively, 2 weeks later. When the same antibody type was detected, no significant difference was observed between enzyme-linked immunosorbent assays and other forms of immunoassays. CONCLUSIONS: A typical acute antibody response is induced during SARS-CoV-2 infection. Serology testing provides an important complement to RNA testing in the later stages of illness for pathogenic-specific diagnosis and helpful information to evaluate the adapted immunity status of patients.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Adult , Aged , COVID-19 , COVID-19 Testing , China , Coronavirus Infections/complications , Female , Hospitalization , Humans , Infectious Disease Incubation Period , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , SARS-CoV-2 , Sensitivity and Specificity , Seroconversion , Symptom Assessment , Time Factors , Viral Load
7.
BMJ ; 369: m1443, 2020 04 21.
Article in English | MEDLINE | ID: covidwho-99975

ABSTRACT

OBJECTIVE: To evaluate viral loads at different stages of disease progression in patients infected with the 2019 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the first four months of the epidemic in Zhejiang province, China. DESIGN: Retrospective cohort study. SETTING: A designated hospital for patients with covid-19 in Zhejiang province, China. PARTICIPANTS: 96 consecutively admitted patients with laboratory confirmed SARS-CoV-2 infection: 22 with mild disease and 74 with severe disease. Data were collected from 19 January 2020 to 20 March 2020. MAIN OUTCOME MEASURES: Ribonucleic acid (RNA) viral load measured in respiratory, stool, serum, and urine samples. Cycle threshold values, a measure of nucleic acid concentration, were plotted onto the standard curve constructed on the basis of the standard product. Epidemiological, clinical, and laboratory characteristics and treatment and outcomes data were obtained through data collection forms from electronic medical records, and the relation between clinical data and disease severity was analysed. RESULTS: 3497 respiratory, stool, serum, and urine samples were collected from patients after admission and evaluated for SARS-CoV-2 RNA viral load. Infection was confirmed in all patients by testing sputum and saliva samples. RNA was detected in the stool of 55 (59%) patients and in the serum of 39 (41%) patients. The urine sample from one patient was positive for SARS-CoV-2. The median duration of virus in stool (22 days, interquartile range 17-31 days) was significantly longer than in respiratory (18 days, 13-29 days; P=0.02) and serum samples (16 days, 11-21 days; P<0.001). The median duration of virus in the respiratory samples of patients with severe disease (21 days, 14-30 days) was significantly longer than in patients with mild disease (14 days, 10-21 days; P=0.04). In the mild group, the viral loads peaked in respiratory samples in the second week from disease onset, whereas viral load continued to be high during the third week in the severe group. Virus duration was longer in patients older than 60 years and in male patients. CONCLUSION: The duration of SARS-CoV-2 is significantly longer in stool samples than in respiratory and serum samples, highlighting the need to strengthen the management of stool samples in the prevention and control of the epidemic, and the virus persists longer with higher load and peaks later in the respiratory tissue of patients with severe disease.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Pneumonia, Viral/virology , Adult , COVID-19 , China , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL