Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Sci Rep ; 11(1): 10678, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1238016


With an urgent need for bedside imaging of coronavirus disease 2019 (COVID-19), this study's main goal was to assess inter- and intraobserver agreement in lung ultrasound (LUS) of COVID-19 patients. In this single-center study we prospectively acquired and evaluated 100 recorded ten-second cine-loops in confirmed COVID-19 intensive care unit (ICU) patients. All loops were rated by ten observers with different subspeciality backgrounds for four times by each observer (400 loops overall) in a random sequence using a web-based rating tool. We analyzed inter- and intraobserver variability for specific pathologies and a semiquantitative LUS score. Interobserver agreement for both, identification of specific pathologies and assignment of LUS scores was fair to moderate (e.g., LUS score 1 Fleiss' κ = 0.27; subpleural consolidations Fleiss' κ = 0.59). Intraobserver agreement was mostly moderate to substantial with generally higher agreement for more distinct findings (e.g., lowest LUS score 0 vs. highest LUS score 3 (median Fleiss' κ = 0.71 vs. 0.79) or air bronchograms (median Fleiss' κ = 0.72)). Intraobserver consistency was relatively low for intermediate LUS scores (e.g. LUS Score 1 median Fleiss' κ = 0.52). We therefore conclude that more distinct LUS findings (e.g., air bronchograms, subpleural consolidations) may be more suitable for disease monitoring, especially with more than one investigator and that training material used for LUS in point-of-care ultrasound (POCUS) should pay refined attention to areas such as B-line quantification and differentiation of intermediate LUS scores.

COVID-19/diagnostic imaging , Lung/diagnostic imaging , Point-of-Care Systems , SARS-CoV-2 , COVID-19/therapy , Female , Humans , Male , Middle Aged , Monitoring, Physiologic , Observer Variation , Prospective Studies , Ultrasonography
PLoS One ; 16(2): e0246956, 2021.
Article in English | MEDLINE | ID: covidwho-1085151


BACKGROUND: The COVID-19 pandemic led to the implementation of drastic shutdown measures worldwide. While quarantine, self-isolation and shutdown laws helped to effectively contain and control the spread of SARS-CoV-2, the impact of COVID-19 shutdowns on trauma care in emergency departments (EDs) remains elusive. METHODS: All ED patient records from the 35-day COVID-19 shutdown (SHUTDOWN) period were retrospectively compared to a calendar-matched control period in 2019 (CTRL) as well as to a pre (PRE)- and post (POST)-shutdown period in an academic Level I Trauma Center in Berlin, Germany. Total patient and orthopedic trauma cases and contacts as well as trauma causes and injury patterns were evaluated during respective periods regarding absolute numbers, incidence rate ratios (IRRs) and risk ratios (RRs). FINDINGS: Daily total patient cases (SHUTDOWN vs. CTRL, 106.94 vs. 167.54) and orthopedic trauma cases (SHUTDOWN vs. CTRL, 30.91 vs. 52.06) decreased during the SHUTDOWN compared to the CTRL period with IRRs of 0.64 and 0.59. While absolute numbers decreased for most trauma causes during the SHUTDOWN period, we observed increased incidence proportions of household injuries and bicycle accidents with RRs of 1.31 and 1.68 respectively. An RR of 2.41 was observed for injuries due to domestic violence. We further recorded increased incidence proportions of acute and regular substance abuse during the SHUTDOWN period with RRs of 1.63 and 3.22, respectively. CONCLUSIONS: While we observed a relevant decrease in total patient cases, relative proportions of specific trauma causes and injury patterns increased during the COVID-19 shutdown in Berlin, Germany. As government programs offered prompt financial aid during the pandemic to individuals and businesses, additional social support may be considered for vulnerable domestic environments.

COVID-19/epidemiology , Fractures, Bone/epidemiology , Quarantine/statistics & numerical data , Trauma Centers/statistics & numerical data , COVID-19/prevention & control , Fractures, Bone/classification , Fractures, Bone/etiology , Germany , Hospitals, University/statistics & numerical data , Humans
Biomarkers ; 26(3): 213-220, 2021 May.
Article in English | MEDLINE | ID: covidwho-1030957


BACKGROUND: In the emergency department (ED) setting, rapid testing for SARS-CoV-2 is likely associated with advantages to patients and healthcare workers, for example, enabling early but rationale use of limited isolation resources. Most recently, several SARS-CoV-2 rapid point-of-care antigen tests (AGTEST) became available. There is a growing need for data regarding their clinical utility and performance in the diagnosis of SARS-CoV-2 infection in the real life setting EDs. METHODS: We implemented AGTEST (here: Roche/SD Biosensor) in all four adult and the one paediatric EDs at Charité - Universitätsmedizin Berlin in our diagnostic testing strategy. Test indication was limited to symptomatic suspected COVID-19 patients. Detailed written instructions on who to test were distributed and testing personnel were trained in proper specimen collection and handling. In each suspected COVID-19 patient, two sequential deep oro-nasopharyngeal swabs were obtained for viral tests. The first swab was collected for nucleic acid testing through SARS-CoV-2 real-time reverse transcriptase (rt)-PCR diagnostic panel (PCRTEST) in the central laboratory. The second swab was collected to perform the AGTEST. Analysis of routine data was prospectively planned and data were retrieved from the medical records after the inclusion period in the adult or paediatric ED. Diagnostic performance was calculated using the PCRTEST as reference standard. False negative and false positive AGTEST results were analysed individually and compared with viral concentrations derived from the calibrated PCRTEST. RESULTS: We included n = 483 patients including n = 202 from the paediatric ED. N = 10 patients had to be excluded due to missing data and finally n = 473 patients were analysed. In the adult cohort, the sensitivity of the AGTEST was 75.3 (95%CI: 65.8/83.4)% and the specificity was 100 (95%CI: 98.4/100)% with a SARS-CoV-2 prevalence of 32.8%; the positive predictive value was 100 (95%CI: 95.7/100)% and the negative predictive value 89.2 (95%CI: 84.5/93.9)%. In the paediatric cohort, the sensitivity was 72.0 (95%CI: 53.3/86.7)%, the specificity was 99.4 (95%CI:97.3/99.9)% with a prevalence of 12.4%; the positive predictive value was 94.7 (95%CI: 78.3/99.7)% and the negative predictive value was 96.2 (95%CI:92.7/98.3)%. Thus, n = 22 adult and n = 7 paediatric patients showed false negative AGTEST results and only one false positive AGTEST occurred, in the paediatric cohort. Calculated viral concentrations from the rt-PCR lay between 3.16 and 9.51 log10 RNA copies/mL buffer. All false negative patients in the adult ED cohort, who had confirmed symptom onset at least seven days earlier had less than 5 × 105 RNA copies/mL buffer. CONCLUSIONS: We conclude that the use of AGTEST among symptomatic patients in the emergency setting is useful for the early identification of COVID-19, but patients who test negative require confirmation by PCRTEST and must stay isolated until this result becomes available. Adult patients with a false negative AGTEST and symptom onset at least one week earlier have typically a low SARS-CoV-2 RNA concentration and are likely no longer infectious.

Antigens, Viral/blood , COVID-19/diagnosis , Emergency Service, Hospital , Immunoassay/methods , SARS-CoV-2/immunology , COVID-19/virology , Humans , SARS-CoV-2/isolation & purification