Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Journal of clinical and translational science ; 6(1), 2022.
Article in English | EuropePMC | ID: covidwho-1870848

ABSTRACT

Introduction: As clinical trials were rapidly initiated in response to the COVID-19 pandemic, Data and Safety Monitoring Boards (DSMBs) faced unique challenges overseeing trials of therapies never tested in a disease not yet characterized. Traditionally, individual DSMBs do not interact or have the benefit of seeing data from other accruing trials for an aggregated analysis to meaningfully interpret safety signals of similar therapeutics. In response, we developed a compliant DSMB Coordination (DSMBc) framework to allow the DSMB from one study investigating the use of SARS-CoV-2 convalescent plasma to treat COVID-19 to review data from similar ongoing studies for the purpose of safety monitoring. Methods: The DSMBc process included engagement of DSMB chairs and board members, execution of contractual agreements, secure data acquisition, generation of harmonized reports utilizing statistical graphics, and secure report sharing with DSMB members. Detailed process maps, a secure portal for managing DSMB reports, and templates for data sharing and confidentiality agreements were developed. Results: Four trials participated. Data from one trial were successfully harmonized with that of an ongoing trial. Harmonized reports allowing for visualization and drill down into the data were presented to the ongoing trial’s DSMB. While DSMB deliberations are confidential, the Chair confirmed successful review of the harmonized report. Conclusion: It is feasible to coordinate DSMB reviews of multiple independent studies of a similar therapeutic in similar patient cohorts. The materials presented mitigate challenges to DSMBc and will help expand these initiatives so DSMBs may make more informed decisions with all available information.

2.
J Infect Dis ; 2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1853098

ABSTRACT

BACKGROUND: The study objective was to evaluate 2 and 3 dose COVID-19 mRNA vaccine effectiveness (VE) in preventing COVID-19 hospitalization among adult solid organ transplant (SOT) recipients. METHODS: 21-site case-control analysis of 10,425 adults hospitalized March-December 2021. Cases were hospitalized with COVID-19; controls were hospitalized for an alternative diagnosis (SARS-CoV-2 negative). Participants were classified as: SOT recipient (n=440), other immunocompromising condition (n=1684), or immunocompetent (n=8301). VE against COVID-19 associated hospitalization was calculated as 1-adjusted odds ratio of prior vaccination among cases compared with controls. RESULTS: Among SOT recipients, VE was 29% (95% CI: -19 to 58%) for 2 doses and 77% (95% CI: 48 to 90%) for 3 doses. Among patients with other immunocompromising conditions, VE was 72% (95% CI: 64 to 79%) for 2 doses and 92% (95% CI: 85 to 95%) for 3 doses. Among immunocompetent patients, VE was 88% (95% CI: 87 to 90%) for 2 doses and 96% (95% CI: 83 to 99%) for 3 doses. CONCLUSION: Effectiveness of COVID-19 mRNA vaccines was lower for SOT recipients than immunocompetent people and those with other immunocompromising conditions. Among SOT recipients, vaccination with 3 doses of an mRNA vaccine led to substantially greater protection than 2 doses.

4.
Journal of Clinical and Translational Science ; 6(1), 2022.
Article in English | ProQuest Central | ID: covidwho-1843038

ABSTRACT

Background:The Clinical and Translational Science Award Program (CTSA) Trial Innovation Network (TIN) was launched in 2016 to increase the efficiency and effectiveness of multisite trials by supporting the development of national infrastructure. With the advent of the COVID-19 pandemic, it was therefore well-positioned to support clinical trial collaboration. The TIN was leveraged to support two initiatives: (1) to create and evaluate a mechanism for coordinating Data and Safety Monitoring Board (DSMB) activities among multiple ongoing trials of the same therapeutic agents, and (2) to share data across clinical trials so that smaller, likely underpowered studies, could be combined to produce meaningful and actionable data through pooled analyses. The success of these initiatives was understood to be dependent upon the willingness of investigators, study teams, and US National Institutes of Health research networks to collaborate and share information.Methods:To inform these two initiatives, we conducted semistructured interviews with members of CTSA hubs and clinical research stakeholders that probed barriers and facilitators to collaboration. Thematic analysis identified topics relevant across institutions, individuals, and DSMBs.Results:The DSMB coordination initiative was viewed as less controversial, while the data pooling initiative was seen as complex because of its potential impact on publication, authorship, and the rewards of discovery. Barriers related to resources, centralization, and technical work were significant, but interviewees suggested these could be handled by the provision of central funding and supportive frameworks. The more intractable findings were related to issues around credit and ownership of data.Conclusion:Based on our interviews, we conclude with nine recommended actions that can be implemented to support collaboration.

5.
J Clin Transl Sci ; 6(1): e49, 2022.
Article in English | MEDLINE | ID: covidwho-1815388

ABSTRACT

Introduction: As clinical trials were rapidly initiated in response to the COVID-19 pandemic, Data and Safety Monitoring Boards (DSMBs) faced unique challenges overseeing trials of therapies never tested in a disease not yet characterized. Traditionally, individual DSMBs do not interact or have the benefit of seeing data from other accruing trials for an aggregated analysis to meaningfully interpret safety signals of similar therapeutics. In response, we developed a compliant DSMB Coordination (DSMBc) framework to allow the DSMB from one study investigating the use of SARS-CoV-2 convalescent plasma to treat COVID-19 to review data from similar ongoing studies for the purpose of safety monitoring. Methods: The DSMBc process included engagement of DSMB chairs and board members, execution of contractual agreements, secure data acquisition, generation of harmonized reports utilizing statistical graphics, and secure report sharing with DSMB members. Detailed process maps, a secure portal for managing DSMB reports, and templates for data sharing and confidentiality agreements were developed. Results: Four trials participated. Data from one trial were successfully harmonized with that of an ongoing trial. Harmonized reports allowing for visualization and drill down into the data were presented to the ongoing trial's DSMB. While DSMB deliberations are confidential, the Chair confirmed successful review of the harmonized report. Conclusion: It is feasible to coordinate DSMB reviews of multiple independent studies of a similar therapeutic in similar patient cohorts. The materials presented mitigate challenges to DSMBc and will help expand these initiatives so DSMBs may make more informed decisions with all available information.

6.
Chest ; 2022 Apr 30.
Article in English | MEDLINE | ID: covidwho-1814242

ABSTRACT

Mortality historically has been the primary outcome of choice for acute and critical care clinical trials. However, undue reliance on mortality can limit the scope of trials that can be performed. Large sample sizes usually are needed for trials powered for a mortality outcome, and focusing solely on mortality fails to recognize the importance that reducing morbidity can have on patients' lives. The COVID-19 pandemic has highlighted the need for rapid, efficient trials to evaluate new therapies rigorously for hospitalized patients with acute lung injury. Oxygen-free days (OFDs) are a novel outcome for clinical trials that is a composite of mortality and duration of new supplemental oxygen use. It is designed to characterize recovery from acute lung injury in populations with a high prevalence of new hypoxemia and supplemental oxygen use. In these populations, OFDs capture two patient-centered consequences of acute lung injury: mortality and hypoxemic lung dysfunction. Power to detect differences in OFDs typically is greater than that for other clinical trial outcomes, such as mortality and ventilator-free days. OFDs are the primary outcome for the Fourth Accelerating COVID-19 Therapeutic Interventions and Vaccines Host Tissue platform, which evaluates novel therapies targeting the host response to COVID-19 among adults hospitalized with COVID-19 and new hypoxemia. This article outlines the rationale for use of OFDs as an outcome for clinical trials, proposes a standardized method for defining and analyzing OFDs, and provides a framework for sample size calculations using the OFD outcome.

7.
JAMA Intern Med ; 182(6): 612-621, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1798074

ABSTRACT

Importance: Awake prone positioning may improve hypoxemia among patients with COVID-19, but whether it is associated with improved clinical outcomes remains unknown. Objective: To determine whether the recommendation of awake prone positioning is associated with improved outcomes among patients with COVID-19-related hypoxemia who have not received mechanical ventilation. Design, Setting, and Participants: This pragmatic nonrandomized controlled trial was conducted at 2 academic medical centers (Vanderbilt University Medical Center and NorthShore University HealthSystem) during the COVID-19 pandemic. A total of 501 adult patients with COVID-19-associated hypoxemia who had not received mechanical ventilation were enrolled from May 13 to December 11, 2020. Interventions: Patients were assigned 1:1 to receive either the practitioner-recommended awake prone positioning intervention (intervention group) or usual care (usual care group). Main Outcomes and Measures: Primary outcome analyses were performed using a bayesian proportional odds model with covariate adjustment for clinical severity ranking based on the World Health Organization ordinal outcome scale, which was modified to highlight the worst level of hypoxemia on study day 5. Results: A total of 501 patients (mean [SD] age, 61.0 [15.3] years; 284 [56.7%] were male; and most [417 (83.2%)] were self-reported non-Hispanic or non-Latinx) were included. Baseline severity was comparable between the intervention vs usual care groups, with 170 patients (65.9%) vs 162 patients (66.7%) receiving oxygen via standard low-flow nasal cannula, 71 patients (27.5%) vs 62 patients (25.5%) receiving oxygen via high-flow nasal cannula, and 16 patients (6.2%) vs 19 patients (7.8%) receiving noninvasive positive-pressure ventilation. Nursing observations estimated that patients in the intervention group spent a median of 4.2 hours (IQR, 1.8-6.7 hours) in the prone position per day compared with 0 hours (IQR, 0-0.7 hours) per day in the usual care group. On study day 5, the bayesian posterior probability of the intervention group having worse outcomes than the usual care group on the modified World Health Organization ordinal outcome scale was 0.998 (posterior median adjusted odds ratio [aOR], 1.63; 95% credibility interval [CrI], 1.16-2.31). However, on study days 14 and 28, the posterior probabilities of harm were 0.874 (aOR, 1.29; 95% CrI, 0.84-1.99) and 0.673 (aOR, 1.12; 95% CrI, 0.67-1.86), respectively. Exploratory outcomes (progression to mechanical ventilation, length of stay, and 28-day mortality) did not differ between groups. Conclusions and Relevance: In this nonrandomized controlled trial, prone positioning offered no observed clinical benefit among patients with COVID-19-associated hypoxemia who had not received mechanical ventilation. Moreover, there was substantial evidence of worsened clinical outcomes at study day 5 among patients recommended to receive the awake prone positioning intervention, suggesting potential harm. Trial Registration: ClinicalTrials.gov Identifier: NCT04359797.


Subject(s)
COVID-19 , Adult , Bayes Theorem , COVID-19/therapy , Female , Humans , Hypoxia/etiology , Hypoxia/therapy , Male , Middle Aged , Oxygen , Pandemics , Prone Position , Respiration, Artificial , Wakefulness
8.
Trials ; 23(1): 273, 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1779667

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has a heterogeneous outcome in individuals from remaining asymptomatic to death. In a majority of cases, mild symptoms are present that do not require hospitalization and can be successfully treated in the outpatient setting, though symptoms may persist for a long duration. We hypothesize that drugs suitable for decentralized study in outpatients will have efficacy among infected outpatients METHODS: The TREAT NOW platform is designed to accommodate testing multiple agents with the ability to incorporate new agents in the future. TREAT NOW is an adaptive, blinded, multi-center, placebo-controlled superiority randomized clinical trial which started with two active therapies (hydroxychloroquine and lopinavir/ritonavir) and placebo, with the hydroxychloroquine arm dropped shortly after enrollment began due to external evidence. Each arm has a target enrollment of 300 participants who will be randomly assigned in an equal allocation to receive either an active therapy or placebo twice daily for 14 days with daily electronic surveys collected over days 1 through 16 and on day 29 to evaluate symptoms and a modified COVID-19 ordinal outcome scale. Participants are enrolled remotely by telephone and consented with a digital interface, study drug is overnight mailed to study participants, and data collection occurs electronically without in-person interactions. DISCUSSION: If effective treatments for COVID-19 can be identified for individuals in the outpatient setting before they advance to severe disease, it will prevent progression to more severe disease, reduce the need for hospitalization, and shorten the duration of symptoms. The novel decentralized, "no touch" approach used by the TREAT NOW platform has distinction advantages over traditional in-person trials to reach broader populations and perform study procedures in a pragmatic yet rigorous manner. TRIAL REGISTRATION: ClinicalTrials.gov NCT04372628. Registered on April 30, 2020. First posted on May 4, 2020.


Subject(s)
COVID-19 , Antiviral Agents/adverse effects , COVID-19/drug therapy , Hospitalization , Humans , Hydroxychloroquine/adverse effects , Outpatients , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
9.
Influenza Other Respir Viruses ; 16(4): 680-689, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1764954

ABSTRACT

BACKGROUND: We sought to assess whether persistent COVID-19 symptoms beyond 6 months (Long-COVID) among patients with mild COVID-19 is associated with poorer health status, quality of life, and psychological distress. METHODS: This was a multicenter prospective cohort study that included adult outpatients with acute COVID-19 from eight sites during 2-week sampling periods from April 1 and July 28, 2020. Participants were contacted 6-11 months after their first positive SARS-CoV-2 to complete a survey, which collected information on the severity of eight COVID-19 symptoms using a 4-point scale ranging from 0 (not present) to 3 (severe) at 1 month before COVID-19 (pre-illness) and at follow-up; the difference for each was calculated as an attributable persistent symptom severity score. A total attributable persistent COVID-19 symptom burden score was calculated by summing the attributable persistent severity scores for all eight symptoms. Outcomes measured at long-term follow-up comprised overall health status (EuroQol visual analogue scale), quality of life (EQ-5D-5L), and psychological distress (Patient Health Questionnaire-4). The association between the total attributable persistent COVID-19 burden score and each outcome was analyzed using multivariable proportional odds regression. RESULTS: Of the 2092 outpatients with COVID-19, 436 (21%) responded to the survey. The median (IQR) attributable persistent COVID-19 symptom burden score was 2 (0, 4); higher scores were associated with lower overall health status (aOR 0.63; 95% CI: 0.57-0.69), lower quality of life (aOR: 0.65; 95%CI: 0.59-0.72), and higher psychological distress (aOR: 1.40; 95%CI, 1.28-1.54) after adjusting for age, race, ethnicity, education, and income. CONCLUSIONS: In participants with mild acute COVID-19, the burden of persistent symptoms was significantly associated with poorer long-term health status, poorer quality of life, and psychological distress.


Subject(s)
COVID-19 , Psychological Distress , Adult , COVID-19/complications , COVID-19/epidemiology , Health Status , Humans , Prospective Studies , Quality of Life/psychology , SARS-CoV-2
10.
BMJ ; 376: e069761, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1736045

ABSTRACT

OBJECTIVES: To characterize the clinical severity of covid-19 associated with the alpha, delta, and omicron SARS-CoV-2 variants among adults admitted to hospital and to compare the effectiveness of mRNA vaccines to prevent hospital admissions related to each variant. DESIGN: Case-control study. SETTING: 21 hospitals across the United States. PARTICIPANTS: 11 690 adults (≥18 years) admitted to hospital: 5728 with covid-19 (cases) and 5962 without covid-19 (controls). Patients were classified into SARS-CoV-2 variant groups based on viral whole genome sequencing, and, if sequencing did not reveal a lineage, by the predominant circulating variant at the time of hospital admission: alpha (11 March to 3 July 2021), delta (4 July to 25 December 2021), and omicron (26 December 2021 to 14 January 2022). MAIN OUTCOME MEASURES: Vaccine effectiveness calculated using a test negative design for mRNA vaccines to prevent covid-19 related hospital admissions by each variant (alpha, delta, omicron). Among patients admitted to hospital with covid-19, disease severity on the World Health Organization's clinical progression scale was compared among variants using proportional odds regression. RESULTS: Effectiveness of the mRNA vaccines to prevent covid-19 associated hospital admissions was 85% (95% confidence interval 82% to 88%) for two vaccine doses against the alpha variant, 85% (83% to 87%) for two doses against the delta variant, 94% (92% to 95%) for three doses against the delta variant, 65% (51% to 75%) for two doses against the omicron variant; and 86% (77% to 91%) for three doses against the omicron variant. In-hospital mortality was 7.6% (81/1060) for alpha, 12.2% (461/3788) for delta, and 7.1% (40/565) for omicron. Among unvaccinated patients with covid-19 admitted to hospital, severity on the WHO clinical progression scale was higher for the delta versus alpha variant (adjusted proportional odds ratio 1.28, 95% confidence interval 1.11 to 1.46), and lower for the omicron versus delta variant (0.61, 0.49 to 0.77). Compared with unvaccinated patients, severity was lower for vaccinated patients for each variant, including alpha (adjusted proportional odds ratio 0.33, 0.23 to 0.49), delta (0.44, 0.37 to 0.51), and omicron (0.61, 0.44 to 0.85). CONCLUSIONS: mRNA vaccines were found to be highly effective in preventing covid-19 associated hospital admissions related to the alpha, delta, and omicron variants, but three vaccine doses were required to achieve protection against omicron similar to the protection that two doses provided against the delta and alpha variants. Among adults admitted to hospital with covid-19, the omicron variant was associated with less severe disease than the delta variant but still resulted in substantial morbidity and mortality. Vaccinated patients admitted to hospital with covid-19 had significantly lower disease severity than unvaccinated patients for all the variants.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2 , Case-Control Studies , Hospitalization , Humans , Immunization Schedule , Prospective Studies , Severity of Illness Index , United States
11.
J Infect Dis ; 225(10): 1694-1700, 2022 05 16.
Article in English | MEDLINE | ID: covidwho-1704377

ABSTRACT

Vaccine effectiveness (VE) against COVID-19 hospitalization was evaluated among immunocompetent adults (≥18 years) during March-August 2021 using a case-control design. Among 1669 hospitalized COVID-19 cases (11% fully vaccinated) and 1950 RT-PCR-negative controls (54% fully vaccinated), VE was 96% (95% confidence interval [CI], 93%-98%) among patients with no chronic medical conditions and 83% (95% CI, 76%-88%) among patients with ≥ 3 categories of conditions. VE was similar between those aged 18-64 years versus ≥65 years (P > .05). VE against severe COVID-19 was very high among adults without chronic conditions and lessened with increasing comorbidity burden.


Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Chronic Disease , Hospitalization , Humans , Vaccines, Synthetic
12.
Clin Infect Dis ; 2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1700456

ABSTRACT

BACKGROUND: As SARS-CoV-2 vaccination coverage increases in the United States (US), there is a need to understand the real-world effectiveness against severe Covid-19 and among people at increased risk for poor outcomes. METHODS: In a multicenter case-control analysis of US adults hospitalized March 11-May 5, 2021, we evaluated vaccine effectiveness to prevent Covid-19 hospitalizations by comparing odds of prior vaccination with an mRNA vaccine (Pfizer-BioNTech or Moderna) between cases hospitalized with Covid-19 and hospital-based controls who tested negative for SARS-CoV-2. RESULTS: Among 1212 participants, including 593 cases and 619 controls, median age was 58 years, 22.8% were Black, 13.9% were Hispanic, and 21.0% had immunosuppression. SARS-CoV-2 lineage B.1.1.7 (Alpha) was the most common variant (67.9% of viruses with lineage determined). Full vaccination (receipt of two vaccine doses ≥14 days before illness onset) had been received by 8.2% of cases and 36.4% of controls. Overall vaccine effectiveness was 87.1% (95% CI: 80.7 to 91.3%). Vaccine effectiveness was similar for Pfizer-BioNTech and Moderna vaccines, and highest in adults aged 18-49 years (97.4%; 95% CI: 79.3 to 99.7%). Among 45 patients with vaccine-breakthrough Covid hospitalizations, 44 (97.8%) were ≥50 years old and 20 (44.4%) had immunosuppression. Vaccine effectiveness was lower among patients with immunosuppression (62.9%; 95% CI: 20.8 to 82.6%) than without immunosuppression (91.3%; 95% CI: 85.6 to 94.8%). CONCLUSION: During March-May 2021, SARS-CoV-2 mRNA vaccines were highly effective for preventing Covid-19 hospitalizations among US adults. SARS-CoV-2 vaccination was beneficial for patients with immunosuppression, but effectiveness was lower in the immunosuppressed population.

13.
Crit Care Explor ; 4(1): e0618, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1635227

ABSTRACT

To test the hypothesis that relatively lower clot strength on thromboelastography maximum amplitude (MA) is associated with development of venous thromboembolism (VTE) in critically ill patients with COVID-19. DESIGN: Prospective, observational cohort study. SETTING: Tertiary care, academic medical center in Nashville, TN. PATIENTS: Patients with acute respiratory failure from COVID-19 pneumonia admitted to the adult medical ICU without known VTE at enrollment. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Ninety-eight consecutive critically ill adults with laboratory-confirmed COVID-19 were enrolled. Thromboelastography parameters and conventional coagulation parameters were measured on days 0 (within 48 hr of ICU admission), 3, 5, and 7 after enrollment. The primary outcome was diagnosis of VTE with confirmed deep venous thrombosis and/or pulmonary embolism by clinical imaging or autopsy. Twenty-six patients developed a VTE. Multivariable regression controlling for antiplatelet exposure and anticoagulation dose with death as a competing risk found that lower MA was associated with increased risk of VTE. Each 1 mm increase in enrollment and peak MA was associated with an 8% and 14% decrease in the risk of VTE, respectively (enrollment MA: subdistribution hazard ratio [SHR], 0.92; 95% CI, 0.87-0.97; p = 0.003 and peak MA: SHR, 0.86; 95% CI, 0.81-0.91; p < 0.001). Lower enrollment platelet counts and fibrinogen levels were also associated with increased risk of VTE (p = 0.002 and p = 0.01, respectively). Platelet count and fibrinogen level were positively associated with MA (multivariable model: adjusted R 2 = 0.51; p < 0.001). CONCLUSIONS: When controlling for the competing risk of death, lower enrollment and peak MA were associated with increased risk of VTE. Lower platelet counts and fibrinogen levels at enrollment were associated with increased risk of VTE. The association of diminished MA, platelet counts, and fibrinogen with VTE may suggest a relative consumptive coagulopathy in critically ill patients with COVID-19.

14.
Clin Infect Dis ; 73(8): 1459-1468, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1490480

ABSTRACT

BACKGROUND: Influenza vaccine effectiveness (VE) against a spectrum of severe disease, including critical illness and death, remains poorly characterized. METHODS: We conducted a test-negative study in an intensive care unit (ICU) network at 10 US hospitals to evaluate VE for preventing influenza-associated severe acute respiratory infection (SARI) during the 2019-2020 season, which was characterized by circulation of drifted A/H1N1 and B-lineage viruses. Cases were adults hospitalized in the ICU and a targeted number outside the ICU (to capture a spectrum of severity) with laboratory-confirmed, influenza-associated SARI. Test-negative controls were frequency-matched based on hospital, timing of admission, and care location (ICU vs non-ICU). Estimates were adjusted for age, comorbidities, and other confounders. RESULTS: Among 638 patients, the median (interquartile) age was 57 (44-68) years; 286 (44.8%) patients were treated in the ICU and 42 (6.6%) died during hospitalization. Forty-five percent of cases and 61% of controls were vaccinated, which resulted in an overall VE of 32% (95% CI: 2-53%), including 28% (-9% to 52%) against influenza A and 52% (13-74%) against influenza B. VE was higher in adults 18-49 years old (62%; 95% CI: 27-81%) than those aged 50-64 years (20%; -48% to 57%) and ≥65 years old (-3%; 95% CI: -97% to 46%) (P = .0789 for interaction). VE was significantly higher against influenza-associated death (80%; 95% CI: 4-96%) than nonfatal influenza illness. CONCLUSIONS: During a season with drifted viruses, vaccination reduced severe influenza-associated illness among adults by 32%. VE was high among young adults.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adolescent , Adult , Aged , Case-Control Studies , Humans , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Middle Aged , Seasons , United States/epidemiology , Vaccination , Young Adult
15.
BMJ Open ; 11(10): e052013, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1501717

ABSTRACT

INTRODUCTION: Mechanical ventilation of intensive care unit (ICU) patients universally involves titration of the fraction of inspired oxygen to maintain arterial oxygen saturation (SpO2). However, the optimal SpO2 target remains unknown. METHODS AND ANALYSIS: The Pragmatic Investigation of optimaL Oxygen Targets (PILOT) trial is a prospective, unblinded, pragmatic, cluster-crossover trial being conducted in the emergency department (ED) and medical ICU at Vanderbilt University Medical Center in Nashville, Tennessee, USA. PILOT compares use of a lower SpO2 target (target 90% and goal range: 88%-92%), an intermediate SpO2 target (target 94% and goal range: 92%-96%) and a higher SpO2 target (target 98% and goal range: 96%-100%). The study units are assigned to a single SpO2 target (cluster-level allocation) for each 2-month study block, and the assigned SpO2 target switches every 2 months in a randomly generated sequence (cluster-level crossover). The primary outcome is ventilator-free days (VFDs) to study day 28, defined as the number of days alive and free of invasive mechanical ventilation from the final receipt of invasive mechanical ventilation through 28 days after enrolment. ETHICS AND DISSEMINATION: The trial was approved by the Vanderbilt Institutional Review Board. The results will be submitted for publication in a peer-reviewed journal and presented at one or more scientific conferences. TRIAL REGISTRATION NUMBER: The trial protocol was registered with ClinicalTrials.gov on 25 May 2018 prior to initiation of patient enrolment (ClinicalTrials.gov identifier: NCT03537937).


Subject(s)
COVID-19 , Humans , Oxygen , Prospective Studies , Respiration, Artificial , SARS-CoV-2
16.
MMWR Morb Mortal Wkly Rep ; 69(47): 1762-1766, 2020 Nov 27.
Article in English | MEDLINE | ID: covidwho-1389859

ABSTRACT

Most persons infected with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), develop virus-specific antibodies within several weeks, but antibody titers might decline over time. Understanding the timeline of antibody decline is important for interpreting SARS-CoV-2 serology results. Serum specimens were collected from a convenience sample of frontline health care personnel at 13 hospitals and tested for antibodies to SARS-CoV-2 during April 3-June 19, 2020, and again approximately 60 days later to assess this timeline. The percentage of participants who experienced seroreversion, defined as an antibody signal-to-threshold ratio >1.0 at baseline and <1.0 at the follow-up visit, was assessed. Overall, 194 (6.0%) of 3,248 participants had detectable antibodies to SARS-CoV-2 at baseline (1). Upon repeat testing approximately 60 days later (range = 50-91 days), 146 (93.6%) of 156 participants experienced a decline in antibody response indicated by a lower signal-to-threshold ratio at the follow-up visit, compared with the baseline visit, and 44 (28.2%) experienced seroreversion. Participants with higher initial antibody responses were more likely to have antibodies detected at the follow-up test than were those who had a lower initial antibody response. Whether decay in these antibodies increases risk for reinfection and disease remains unanswered. However, these results suggest that serology testing at a single time point is likely to underestimate the number of persons with previous SARS-CoV-2 infection, and a negative serologic test result might not reliably exclude prior infection.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/immunology , Personnel, Hospital/statistics & numerical data , Pneumonia, Viral/immunology , Adult , COVID-19 , Coronavirus Infections/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , United States/epidemiology
17.
MMWR Morb Mortal Wkly Rep ; 69(35): 1221-1226, 2020 Sep 04.
Article in English | MEDLINE | ID: covidwho-1389852

ABSTRACT

Health care personnel (HCP) caring for patients with coronavirus disease 2019 (COVID-19) might be at high risk for contracting SARS-CoV-2, the virus that causes COVID-19. Understanding the prevalence of and factors associated with SARS-CoV-2 infection among frontline HCP who care for COVID-19 patients are important for protecting both HCP and their patients. During April 3-June 19, 2020, serum specimens were collected from a convenience sample of frontline HCP who worked with COVID-19 patients at 13 geographically diverse academic medical centers in the United States, and specimens were tested for antibodies to SARS-CoV-2. Participants were asked about potential symptoms of COVID-19 experienced since February 1, 2020, previous testing for acute SARS-CoV-2 infection, and their use of personal protective equipment (PPE) in the past week. Among 3,248 participants, 194 (6.0%) had positive test results for SARS-CoV-2 antibodies. Seroprevalence by hospital ranged from 0.8% to 31.2% (median = 3.6%). Among the 194 seropositive participants, 56 (29%) reported no symptoms since February 1, 2020, 86 (44%) did not believe that they previously had COVID-19, and 133 (69%) did not report a previous COVID-19 diagnosis. Seroprevalence was lower among personnel who reported always wearing a face covering (defined in this study as a surgical mask, N95 respirator, or powered air purifying respirator [PAPR]) while caring for patients (5.6%), compared with that among those who did not (9.0%) (p = 0.012). Consistent with persons in the general population with SARS-CoV-2 infection, many frontline HCP with SARS-CoV-2 infection might be asymptomatic or minimally symptomatic during infection, and infection might be unrecognized. Enhanced screening, including frequent testing of frontline HCP, and universal use of face coverings in hospitals are two strategies that could reduce SARS-CoV-2 transmission.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/epidemiology , Personnel, Hospital/statistics & numerical data , Pneumonia, Viral/epidemiology , Academic Medical Centers , Adult , Asymptomatic Diseases , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Cross Infection/prevention & control , Female , Humans , Infectious Disease Transmission, Professional-to-Patient/prevention & control , Male , Middle Aged , Pandemics/prevention & control , Personal Protective Equipment/statistics & numerical data , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Seroepidemiologic Studies , United States/epidemiology
18.
Vaccine ; 39(37): 5271-5276, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1371544

ABSTRACT

INTRODUCTION: Understanding patient factors associated with not being vaccinated is essential for successful implementation of influenza vaccination programs. METHODS: We enrolled adults hospitalized with severe acute respiratory illness at 10 United States (US) hospitals during the 2019-2020 influenza season. We interviewed patients to collect data about influenza vaccination, sociodemographic characteristics, and vaccine perceptions. RESULTS: Among 679 participants, 264 (38.9%) reported not receiving influenza vaccination. Among those not vaccinated, 135 (51.1%) reported choosing not to receive a vaccine because of perceived ineffectiveness (36.7%) or risk (14.4%) of influenza vaccination. Sociodemographic factors associated with not being vaccinated included no medical insurance (aOR = 6.42; 95% CI: 2.52-16.38) and being non-White or Hispanic (aOR = 1.54, 95% CI: 1.02-2.32). CONCLUSIONS: Optimizing uptake of influenza vaccination in the US may be improved by educational programs regarding vaccine safety and effectiveness and enhancing vaccine access, particularly among non-White and Hispanic Americans and those without medical insurance.


Subject(s)
Influenza Vaccines , Influenza, Human , Adult , Humans , Influenza, Human/prevention & control , United States , Vaccination
19.
Clin Infect Dis ; 73(Suppl 1): S32-S37, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1364766

ABSTRACT

BACKGROUND: Because of the increased risk for severe coronavirus disease 2019 (COVID-19), the Advisory Committee on Immunization Practices (ACIP) initially prioritized COVID-19 vaccination for persons in long-term care facilities (LTCF), persons aged ≥65 years, and persons aged 16-64 years with high-risk medical conditions when there is limited vaccine supply. We compared characteristics and severe outcomes of hospitalized patients with COVID-19 in the United States between early and later in the pandemic categorized by groups at higher risk of severe COVID-19. METHODS: Observational study of sampled patients aged ≥18 years who tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and admitted to one of 14 academic hospitals in the United States during March-June and October-December 2020. Demographic and clinical information were gathered from electronic health record data. RESULTS: Among 647 patients, 91% met ≥1 of the following risk factors for severe COVID-19 [91% March-June (n = 434); 90% October-December (n = 213)]; 19% were LTCF residents, 45% were aged ≥65-years, and 84% had ≥1 high-risk condition. The proportion of patients who resided in a LTCF declined significantly (25% vs 6%) from early to later pandemic periods. Compared with patients at lower risk for severe COVID-19, in-hospital mortality was higher among patients at high risk for severe COVID-19 (20% vs 7%); these differences were consistently observed between March-June and October-December. CONCLUSIONS: Most adults hospitalized with COVID-19 were those recommended to be prioritized for vaccination based on risk for developing severe COVID-19. These findings highlight the continued urgency to vaccinate patients at high risk for severe COVID-19 and monitor vaccination impact on hospitalizations and outcomes.


Subject(s)
COVID-19 , Adolescent , Adult , COVID-19 Vaccines , Hospitalization , Humans , SARS-CoV-2 , United States/epidemiology , Vaccination
20.
Clin Infect Dis ; 2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1345719

ABSTRACT

BACKGROUND: As SARS-CoV-2 vaccination coverage increases in the United States (US), there is a need to understand the real-world effectiveness against severe Covid-19 and among people at increased risk for poor outcomes. METHODS: In a multicenter case-control analysis of US adults hospitalized March 11-May 5, 2021, we evaluated vaccine effectiveness to prevent Covid-19 hospitalizations by comparing odds of prior vaccination with an mRNA vaccine (Pfizer-BioNTech or Moderna) between cases hospitalized with Covid-19 and hospital-based controls who tested negative for SARS-CoV-2. RESULTS: Among 1212 participants, including 593 cases and 619 controls, median age was 58 years, 22.8% were Black, 13.9% were Hispanic, and 21.0% had immunosuppression. SARS-CoV-2 lineage B.1.1.7 (Alpha) was the most common variant (67.9% of viruses with lineage determined). Full vaccination (receipt of two vaccine doses ≥14 days before illness onset) had been received by 8.2% of cases and 36.4% of controls. Overall vaccine effectiveness was 87.1% (95% CI: 80.7 to 91.3%). Vaccine effectiveness was similar for Pfizer-BioNTech and Moderna vaccines, and highest in adults aged 18-49 years (97.4%; 95% CI: 79.3 to 99.7%). Among 45 patients with vaccine-breakthrough Covid hospitalizations, 44 (97.8%) were ≥50 years old and 20 (44.4%) had immunosuppression. Vaccine effectiveness was lower among patients with immunosuppression (62.9%; 95% CI: 20.8 to 82.6%) than without immunosuppression (91.3%; 95% CI: 85.6 to 94.8%). CONCLUSION: During March-May 2021, SARS-CoV-2 mRNA vaccines were highly effective for preventing Covid-19 hospitalizations among US adults. SARS-CoV-2 vaccination was beneficial for patients with immunosuppression, but effectiveness was lower in the immunosuppressed population.

SELECTION OF CITATIONS
SEARCH DETAIL