Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
3.
Indoor Air ; 32(2): e12987, 2022 02.
Article in English | MEDLINE | ID: covidwho-1714191

ABSTRACT

To limit community spread of SARS-CoV-2, CDC recommends universal masking indoors, maintaining 1.8 m of physical distancing, adequate ventilation, and avoiding crowded indoor spaces. Several studies have examined the independent influence of each control strategy in mitigating transmission in isolation, yet controls are often implemented concomitantly within an indoor environment. To address the influence of physical distancing, universal masking, and ventilation on very fine respiratory droplets and aerosol particle exposure, a simulator that coughed and exhaled aerosols (the source) and a second breathing simulator (the recipient) were placed in an exposure chamber. When controlling for the other two mitigation strategies, universal masking with 3-ply cotton masks reduced exposure to 0.3-3 µm coughed and exhaled aerosol particles by >77% compared to unmasked tests, whereas physical distancing (0.9 or 1.8 m) significantly changed exposure to cough but not exhaled aerosols. The effectiveness of ventilation depended upon the respiratory activity, that is, coughing or breathing, as well as the duration of exposure time. Our results demonstrate that a layered mitigation strategy approach of administrative and engineering controls can reduce personal inhalation exposure to potentially infectious very fine respiratory droplets and aerosol particles within an indoor environment.


Subject(s)
Air Pollution, Indoor , COVID-19 , Masks , Physical Distancing , Ventilation , Air Pollution, Indoor/prevention & control , COVID-19/prevention & control , Humans , Respiratory Aerosols and Droplets , SARS-CoV-2
4.
Am J Infect Control ; 50(2): 133-140, 2022 02.
Article in English | MEDLINE | ID: covidwho-1653956

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, face masks are used as source control devices to reduce the expulsion of respiratory aerosols from infected people. Modifications such as mask braces, earloop straps, knotting and tucking, and double masking have been proposed to improve mask fit however the data on source control are limited. METHODS: The effectiveness of mask fit modifications was determined by conducting fit tests on human subjects and simulator manikins and by performing simulated coughs and exhalations using a source control measurement system. RESULTS: Medical masks without modification blocked ≥56% of cough aerosols and ≥42% of exhaled aerosols. Modifying fit by crossing the earloops or placing a bracket under the mask did not increase performance, while using earloop toggles, an earloop strap, and knotting and tucking the mask increased performance. The most effective modifications for improving source control performance were double masking and using a mask brace. Placing a cloth mask over a medical mask blocked ≥85% of cough aerosols and ≥91% of exhaled aerosols. Placing a brace over a medical mask blocked ≥95% of cough aerosols and ≥99% of exhaled aerosols. CONCLUSIONS: Fit modifications can greatly improve the performance of face masks as source control devices for respiratory aerosols.


Subject(s)
COVID-19 , Masks , Aerosols , Humans , Pandemics , SARS-CoV-2
5.
Viruses ; 13(12)2021 12 17.
Article in English | MEDLINE | ID: covidwho-1580426

ABSTRACT

There is strong evidence associating the indoor environment with transmission of SARS-CoV-2, the virus that causes COVID-19. SARS-CoV-2 can spread by exposure to droplets and very fine aerosol particles from respiratory fluids that are released by infected persons. Layered mitigation strategies, including but not limited to maintaining physical distancing, adequate ventilation, universal masking, avoiding overcrowding, and vaccination, have shown to be effective in reducing the spread of SARS-CoV-2 within the indoor environment. Here, we examine the effect of mitigation strategies on reducing the risk of exposure to simulated respiratory aerosol particles within a classroom-style meeting room. To quantify exposure of uninfected individuals (Recipients), surrogate respiratory aerosol particles were generated by a breathing simulator with a headform (Source) that mimicked breath exhalations. Recipients, represented by three breathing simulators with manikin headforms, were placed in a meeting room and affixed with optical particle counters to measure 0.3-3 µm aerosol particles. Universal masking of all breathing simulators with a 3-ply cotton mask reduced aerosol exposure by 50% or more compared to scenarios with simulators unmasked. While evaluating the effect of Source placement, Recipients had the highest exposure at 0.9 m in a face-to-face orientation. Ventilation reduced exposure by approximately 5% per unit increase in air change per hour (ACH), irrespective of whether increases in ACH were by the HVAC system or portable HEPA air cleaners. The results demonstrate that mitigation strategies, such as universal masking and increasing ventilation, reduce personal exposure to respiratory aerosols within a meeting room. While universal masking remains a key component of a layered mitigation strategy of exposure reduction, increasing ventilation via system HVAC or portable HEPA air cleaners further reduces exposure.


Subject(s)
Air Pollution, Indoor/prevention & control , Inhalation Exposure/prevention & control , Masks , Physical Distancing , Ventilation , Air Conditioning , COVID-19/prevention & control , Humans , SARS-CoV-2/isolation & purification
6.
Viruses ; 13(12)2021 11 23.
Article in English | MEDLINE | ID: covidwho-1542793

ABSTRACT

Evidence varies as to how far aerosols spread from individuals infected with SARS-CoV-2 in hospital rooms. We investigated the presence of aerosols containing SARS-CoV-2 inside of dedicated COVID-19 patient rooms. Three National Institute for Occupational Safety and Health BC 251 two-stage cyclone samplers were set up in each patient room for a six-hour sampling period. Samplers were place on tripods, which each held two samplers at various heights above the floor. Extracted samples underwent reverse transcription polymerase chain reaction for selected gene regions of the SARS-CoV-2 virus nucleocapsid. Patient medical data were compared between participants in rooms where virus-containing aerosols were detected and those where they were not. Of 576 aerosols samples collected from 19 different rooms across 32 participants, 3% (19) were positive for SARS-CoV-2, the majority from near the head and foot of the bed. Seven of the positive samples were collected inside a single patient room. No significant differences in participant clinical characteristics were found between patients in rooms with positive and negative aerosol samples. SARS-CoV-2 viral aerosols were detected from the patient rooms of nine participants (28%). These findings provide reassurance that personal protective equipment that was recommended for this virus is appropriate given its spread in hospital rooms.


Subject(s)
COVID-19/virology , Patients' Rooms , SARS-CoV-2/isolation & purification , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/genetics , Hospitals , Humans , Middle Aged , Patients' Rooms/statistics & numerical data , Phosphoproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics
7.
Clin Infect Dis ; 73(7): e1790-e1794, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455276

ABSTRACT

BACKGROUND: Previous research has shown that rooms of patients with coronavirus disease 2019 (COVID-19) present the potential for healthcare-associated transmission through aerosols containing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, data on the presence of these aerosols outside of patient rooms are limited. We investigated whether virus-containing aerosols were present in nursing stations and patient room hallways in a referral center with critically ill COVID-19 patients. METHODS: Eight National Institute for Occupational Safety and Health BC 251 2-stage cyclone samplers were set up throughout 6 units, including nursing stations and visitor corridors in intensive care units and general medical units, for 6 h each sampling period. Samplers were placed on tripods which held 2 samplers positioned 102 cm and 152 cm above the floor. Units were sampled for 3 days. Extracted samples underwent reverse transcription polymerase chain reaction for selected gene regions of the SARS-CoV-2 virus nucleocapsid and the housekeeping gene human RNase P as an internal control. RESULTS: The units sampled varied in the number of laboratory-confirmed COVID-19 patients present on the days of sampling. Some of the units included patient rooms under negative pressure, while most were maintained at a neutral pressure. Of 528 aerosol samples collected, none were positive for SARS-CoV-2 RNA by the estimated limit of detection of 8 viral copies/m3 of air. CONCLUSIONS: Aerosolized SARS-CoV-2 outside of patient rooms was undetectable. While healthcare personnel should avoid unmasked close contact with each other, these findings may provide reassurance for the use of alternatives to tight-fitting respirators in areas outside of patient rooms during the current pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Illness , Humans , RNA, Viral/genetics , Referral and Consultation , United States
8.
MMWR Morb Mortal Wkly Rep ; 70(7): 254-257, 2021 Feb 19.
Article in English | MEDLINE | ID: covidwho-1389863

ABSTRACT

Universal masking is one of the prevention strategies recommended by CDC to slow the spread of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1). As of February 1, 2021, 38 states and the District of Columbia had universal masking mandates. Mask wearing has also been mandated by executive order for federal property* as well as on domestic and international transportation conveyances.† Masks substantially reduce exhaled respiratory droplets and aerosols from infected wearers and reduce exposure of uninfected wearers to these particles. Cloth masks§ and medical procedure masks¶ fit more loosely than do respirators (e.g., N95 facepieces). The effectiveness of cloth and medical procedure masks can be improved by ensuring that they are well fitted to the contours of the face to prevent leakage of air around the masks' edges. During January 2021, CDC conducted experimental simulations using pliable elastomeric source and receiver headforms to assess the extent to which two modifications to medical procedure masks, 1) wearing a cloth mask over a medical procedure mask (double masking) and 2) knotting the ear loops of a medical procedure mask where they attach to the mask's edges and then tucking in and flattening the extra material close to the face (knotted and tucked masks), could improve the fit of these masks and reduce the receiver's exposure to an aerosol of simulated respiratory droplet particles of the size considered most important for transmitting SARS-CoV-2. The receiver's exposure was maximally reduced (>95%) when the source and receiver were fitted with modified medical procedure masks. These laboratory-based experiments highlight the importance of good fit to optimize mask performance. Until vaccine-induced population immunity is achieved, universal masking is a highly effective means to slow the spread of SARS-CoV-2** when combined with other protective measures, such as physical distancing, avoiding crowds and poorly ventilated indoor spaces, and good hand hygiene. Innovative efforts to improve the fit of cloth and medical procedure masks to enhance their performance merit attention.


Subject(s)
COVID-19/prevention & control , Masks/standards , COVID-19/epidemiology , COVID-19/transmission , Centers for Disease Control and Prevention, U.S. , Humans , Masks/statistics & numerical data , United States/epidemiology
9.
J Occup Environ Hyg ; 18(8): 409-422, 2021 08.
Article in English | MEDLINE | ID: covidwho-1331517

ABSTRACT

Face masks reduce the expulsion of respiratory aerosols produced during coughs and exhalations ("source control"). Factors such as the directions in which people are facing (orientation) and separation distance also affect aerosol dispersion. However, it is not clear how the combined effects of masking, orientation, and distance affect the exposure of individuals to respiratory aerosols in indoor spaces. We placed a respiratory aerosol simulator ("source") and a breathing simulator ("recipient") in a 3 m × 3 m chamber and measured aerosol concentrations for different combinations of masking, orientation, and separation distance. When the simulators were front-to-front during coughing, masks reduced the 15-min mean aerosol concentration at the recipient by 92% at 0.9 and 1.8 m separation. When the simulators were side-by-side, masks reduced the concentration by 81% at 0.9 m and 78% at 1.8 m. During breathing, masks reduced the aerosol concentration by 66% when front-to-front and 76% when side-by-side at 0.9 m. Similar results were seen at 1.8 m. When the simulators were unmasked, changing the orientations from front-to-front to side-by-side reduced the cough aerosol concentration by 59% at 0.9 m and 60% at 1.8 m. When both simulators were masked, changing the orientations did not significantly change the concentration at either distance during coughing or breathing. Increasing the distance between the simulators from 0.9 m to 1.8 m during coughing reduced the aerosol concentration by 25% when no masks were worn but had little effect when both simulators were masked. During breathing, when neither simulator was masked, increasing the separation reduced the concentration by 13%, which approached significance, while the change was not significant when both source and recipient were masked. Our results show that universal masking reduces exposure to respiratory aerosol particles regardless of the orientation and separation distance between the source and recipient.


Subject(s)
Cough , Exhalation , Aerosols , Cough/prevention & control , Humans , Masks , Respiration
10.
MMWR Morb Mortal Wkly Rep ; 70(27): 972-976, 2021 Jul 09.
Article in English | MEDLINE | ID: covidwho-1302821

ABSTRACT

SARS-CoV-2, the virus that causes COVID-19, can be spread by exposure to droplets and aerosols of respiratory fluids that are released by infected persons when they cough, sing, talk, or exhale. To reduce indoor transmission of SARS-CoV-2 between persons, CDC recommends measures including physical distancing, universal masking (the use of face masks in public places by everyone who is not fully vaccinated), and increased room ventilation (1). Ventilation systems can be supplemented with portable high efficiency particulate air (HEPA) cleaners* to reduce the number of infectious particles in the air and provide enhanced protection from transmission between persons (2); two recent reports found that HEPA air cleaners in classrooms could reduce overall aerosol particle concentrations by ≥80% within 30 minutes (3,4). To investigate the effectiveness of portable HEPA air cleaners and universal masking at reducing exposure to exhaled aerosol particles, the investigation team used respiratory simulators to mimic a person with COVID-19 and other, uninfected persons in a conference room. The addition of two HEPA air cleaners that met the Environmental Protection Agency (EPA)-recommended clean air delivery rate (CADR) (5) reduced overall exposure to simulated exhaled aerosol particles by up to 65% without universal masking. Without the HEPA air cleaners, universal masking reduced the combined mean aerosol concentration by 72%. The combination of the two HEPA air cleaners and universal masking reduced overall exposure by up to 90%. The HEPA air cleaners were most effective when they were close to the aerosol source. These findings suggest that portable HEPA air cleaners can reduce exposure to SARS-CoV-2 aerosols in indoor environments, with greater reductions in exposure occurring when used in combination with universal masking.


Subject(s)
Air Conditioning/instrumentation , Air Filters , Air Pollution, Indoor/prevention & control , Masks , SARS-CoV-2 , Aerosols , Equipment Design , Humans , United States
11.
Aerosol Sci Technol ; 55(10): 1125-1142, 2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-1246510

ABSTRACT

Universal mask wearing is recommended to help control the spread of COVID-19. Masks reduce the expulsion of aerosols of respiratory fluids into the environment (called source control) and offer some protection to the wearer. Masks are often characterized using filtration efficiency, airflow resistance, and manikin or human fit factors, which are standard metrics used for personal protective devices. However, none of these metrics are direct measurements of how effectively a mask blocks coughed and exhaled aerosols. We studied the source control performance of 15 cloth masks (face masks, neck gaiters, and bandanas), two medical masks, and two N95 filtering facepiece respirators by measuring their ability to block aerosols ≤ 7 µm expelled during simulated coughing and exhalation (called source control collection efficiency). These measurements were compared with filtration efficiencies, airflow resistances, and fit factors measured on manikin headforms and humans. Collection efficiencies for the cloth masks ranged from 17% to 71% for coughing and 35% to 66% for exhalation. Filtration efficiencies for the cloth masks ranged from 1.4% to 98%, while the fit factors were 1.3 to 7.4 on headforms and 1.0 to 4.0 on human subjects. The Spearman's rank correlation coefficients between the source control collection efficiencies and the standard metrics ranged from 0.03 to 0.68 and were significant in all but two cases. However, none of the standard metrics were strongly correlated with source control performance. A better understanding of the relationships between source control collection efficiency, filtration efficiency, airflow resistance, and fit factor is needed.

12.
Clin Infect Dis ; 73(7): e1790-e1794, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1052196

ABSTRACT

BACKGROUND: Previous research has shown that rooms of patients with coronavirus disease 2019 (COVID-19) present the potential for healthcare-associated transmission through aerosols containing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, data on the presence of these aerosols outside of patient rooms are limited. We investigated whether virus-containing aerosols were present in nursing stations and patient room hallways in a referral center with critically ill COVID-19 patients. METHODS: Eight National Institute for Occupational Safety and Health BC 251 2-stage cyclone samplers were set up throughout 6 units, including nursing stations and visitor corridors in intensive care units and general medical units, for 6 h each sampling period. Samplers were placed on tripods which held 2 samplers positioned 102 cm and 152 cm above the floor. Units were sampled for 3 days. Extracted samples underwent reverse transcription polymerase chain reaction for selected gene regions of the SARS-CoV-2 virus nucleocapsid and the housekeeping gene human RNase P as an internal control. RESULTS: The units sampled varied in the number of laboratory-confirmed COVID-19 patients present on the days of sampling. Some of the units included patient rooms under negative pressure, while most were maintained at a neutral pressure. Of 528 aerosol samples collected, none were positive for SARS-CoV-2 RNA by the estimated limit of detection of 8 viral copies/m3 of air. CONCLUSIONS: Aerosolized SARS-CoV-2 outside of patient rooms was undetectable. While healthcare personnel should avoid unmasked close contact with each other, these findings may provide reassurance for the use of alternatives to tight-fitting respirators in areas outside of patient rooms during the current pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Illness , Humans , RNA, Viral/genetics , Referral and Consultation , United States
13.
Aerosol Sci Technol ; 55(4): 449-457, 2021 Jan 07.
Article in English | MEDLINE | ID: covidwho-1038251

ABSTRACT

Face masks are recommended to reduce community transmission of SARS-CoV-2. One of the primary benefits of face masks and other coverings is as source control devices to reduce the expulsion of respiratory aerosols during coughing, breathing, and speaking. Face shields and neck gaiters have been proposed as an alternative to face masks, but information about face shields and neck gaiters as source control devices is limited. We used a cough aerosol simulator with a pliable skin headform to propel small aerosol particles (0 to 7 µm) into different face coverings. An N95 respirator blocked 99% (standard deviation (SD) 0.3%) of the cough aerosol, a medical grade procedure mask blocked 59% (SD 6.9%), a 3-ply cotton cloth face mask blocked 51% (SD 7.7%), and a polyester neck gaiter blocked 47% (SD 7.5%) as a single layer and 60% (SD 7.2%) when folded into a double layer. In contrast, the face shield blocked 2% (SD 15.3%) of the cough aerosol. Our results suggest that face masks and neck gaiters are preferable to face shields as source control devices for cough aerosols.

14.
Am J Infect Control ; 48(12): 1540-1542, 2020 12.
Article in English | MEDLINE | ID: covidwho-693247

ABSTRACT

Bioaerosol samples were collected in an airborne infection isolation room, bathroom, and anteroom of a ventilated patient with coronavirus disease 2019. Twenty-eight samples were negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid, possibly due to the patient being on a closed-circuit ventilator or the efficiency of the air exchanges in the room.


Subject(s)
COVID-19/transmission , RNA, Viral/analysis , SARS-CoV-2 , Ventilators, Mechanical/virology , Aerosols , Air Microbiology , COVID-19/virology , Humans , Patient Positioning , Patients' Rooms , Prone Position , Respiration, Artificial
SELECTION OF CITATIONS
SEARCH DETAIL