Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Infect ; 2022 Jan 03.
Article in English | MEDLINE | ID: covidwho-1788130

ABSTRACT

Background COVID-19 vaccines approved in the UK are highly effective in general population cohorts, however, data on effectiveness amongst individuals with clinical conditions that place them at increased risk of severe disease are limited. Methods We used GP electronic health record data, sentinel virology swabbing and antibody testing within a cohort of 712 general practices across England to estimate vaccine antibody response and vaccine effectiveness against medically attended COVID-19 amongst individuals in clinical risk groups using cohort and test-negative case control designs. Findings There was no reduction in S-antibody positivity in most clinical risk groups, however reduced S-antibody positivity and response was significant in the immunosuppressed group. Reduced vaccine effectiveness against clinical disease was also noted in the immunosuppressed group; after a second dose, effectiveness was moderate (Pfizer: 59.6%, 95%CI 18.0-80.1%; AstraZeneca 60.0%, 95%CI -63.6-90.2%). Interpretation In most clinical risk groups, immune response to primary vaccination was maintained and high levels of vaccine effectiveness were seen. Reduced antibody response and vaccine effectiveness were seen after 1 dose of vaccine amongst a broad immunosuppressed group, and second dose vaccine effectiveness was moderate. These findings support maximising coverage in immunosuppressed individuals and the policy of prioritisation of this group for third doses.

2.
J Infect ; 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1778314

ABSTRACT

OBJECTIVES: To monitor changes in seroprevalence of SARS-CoV-2 antibodies in populations over time and between different demographic groups. METHODS: A subset of practices in the Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) sentinel network provided serum samples, collected when volunteer patients had routine blood tests. We tested these samples for SARS-CoV-2 antibodies using Abbott (Chicago, USA), Roche (Basel, Switzerland) and/or Euroimmun (Luebeck, Germany) assays, and linked the results to the patients' primary care computerised medical records. We report seropositivity by region and age group, and additionally examined the effects of gender, ethnicity, deprivation, rurality, shielding recommendation and smoking status. RESULTS: We estimated seropositivity from patients aged 18-100 years old, which ranged from 4.1% (95% CI 3.1-5.3%) to 8.9% (95% CI 7.8-10.2%) across the different assays and time periods. We found higher Euroimmun seropositivity in younger age groups, people of Black and Asian ethnicity (compared to white), major conurbations, and non-smokers. We did not observe any significant effect by region, gender, deprivation, or shielding recommendation. CONCLUSIONS: Our results suggest that prior to the vaccination programme, most of the population remained unexposed to SARS-CoV-2.

3.
EClinicalMedicine ; 45: 101319, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1704577

ABSTRACT

Background: The role of educational settings in SARS-CoV-2 infection and transmission remains controversial. We investigated SARS-CoV-2 infection, seroprevalence, and seroconversion rates in secondary schools during the 2020/21 academic year, which included the emergence of the more transmissible alpha and delta variants, in England. Methods: The UK Health Security Agency (UKHSA) initiated prospective surveillance in 18 urban English secondary schools. Participants had nasal swabs for SARS-CoV-2 RT-PCR and blood sampling for SARS-CoV-2 nucleoprotein and spike protein antibodies at the start (Round 1: September-October 2020) and end (Round 2: December 2020) of the autumn term, when schools reopened after national lockdown was imposed in January 2021 (Round 3: March-April 2021), and end of the academic year (Round 4: May-July 2021). Findings: We enrolled 2314 participants (1277 students, 1037 staff; one participant had missing data for PCR testing). In-school testing identified 31 PCR-positive participants (20 students, 11 staff). Another 247 confirmed cases (112 students, 135 staff) were identified after linkage with national surveillance data, giving an overall positivity rate of 12.0% (278/2313; staff: 14.1%, 146/1037 vs students: 10.3%, 132/1276; p = 0.006). Trends were similar to national infection data. Nucleoprotein-antibody seroprevalence increased for students and staff between Rounds 1 and 3 but were similar between Rounds 3 and 4, when the delta variant was the dominant circulating strain. Overall, Nucleoprotein-antibody seroconversion was 18.4% (137/744) in staff and 18.8% (146/778) in students, while Spike-antibody seroconversion was higher in staff (72.8%, 525/721) than students (21.3%, 163/764) because of vaccination. Interpretation: SARS-CoV-2 infection rates in secondary schools remained low when community infection rates were low, even as the delta variant was emerging in England. Funding: This study was funded by the UK Department of Health and Social Care.

4.
Microbiol Spectr ; 10(1): e0228921, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1702730

ABSTRACT

In March 2020, the Rare and Imported Pathogens Laboratory at the UK Health Security Agency (UKHSA) (formerly Public Health England [PHE]) Porton Down, was tasked by the Department of Health and Social Care with setting up a national surveillance laboratory facility to study SARS-CoV-2 antibody responses and population-level sero-surveillance in response to the growing SARS-CoV-2 outbreak. In the following 12 months, the laboratory tested more than 160,000 samples, facilitating a wide range of research and informing UKHSA, DHSC, and UK government policy. Here we describe the implementation and use of the Euroimmun anti-SARS-CoV-2 IgG assay and provide an extended evaluation of its performance. We present a markedly improved overall sensitivity of 91.39% (≥14 days 92.74%, ≥21 days 93.59%) compared to our small-scale early study, and a specificity of 98.56%. In addition, we detail extended characteristics of the Euroimmun assay: intra- and interassay precision, correlation to neutralization, and assay linearity. IMPORTANCE Serology assays have been useful in determining those with previous SARS-CoV-2 infection in a wide range of research and serosurveillance projects. However, assays vary in their sensitivity at detecting SARS-CoV-2 antibodies. Here, we detail an extended evaluation and characterization of the Euroimmun anti-SARS-CoV-2 IgG assay, one that has been widely used within the United Kingdom on over 160,000 samples to date.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/blood , Immunoglobulin G/blood , SARS-CoV-2/immunology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Humans , Public Health , Reagent Kits, Diagnostic , SARS-CoV-2/genetics , Sensitivity and Specificity , United Kingdom/epidemiology
6.
N Engl J Med ; 386(13): 1207-1220, 2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1692473

ABSTRACT

BACKGROUND: The duration and effectiveness of immunity from infection with and vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relevant to pandemic policy interventions, including the timing of vaccine boosters. METHODS: We investigated the duration and effectiveness of immunity in a prospective cohort of asymptomatic health care workers in the United Kingdom who underwent routine polymerase-chain-reaction (PCR) testing. Vaccine effectiveness (≤10 months after the first dose of vaccine) and infection-acquired immunity were assessed by comparing the time to PCR-confirmed infection in vaccinated persons with that in unvaccinated persons, stratified according to previous infection status. We used a Cox regression model with adjustment for previous SARS-CoV-2 infection status, vaccine type and dosing interval, demographic characteristics, and workplace exposure to SARS-CoV-2. RESULTS: Of 35,768 participants, 27% (9488) had a previous SARS-CoV-2 infection. Vaccine coverage was high: 95% of the participants had received two doses (78% had received BNT162b2 vaccine [Pfizer-BioNTech] with a long interval between doses, 9% BNT162b2 vaccine with a short interval between doses, and 8% ChAdOx1 nCoV-19 vaccine [AstraZeneca]). Between December 7, 2020, and September 21, 2021, a total of 2747 primary infections and 210 reinfections were observed. Among previously uninfected participants who received long-interval BNT162b2 vaccine, adjusted vaccine effectiveness decreased from 85% (95% confidence interval [CI], 72 to 92) 14 to 73 days after the second dose to 51% (95% CI, 22 to 69) at a median of 201 days (interquartile range, 197 to 205) after the second dose; this effectiveness did not differ significantly between the long-interval and short-interval BNT162b2 vaccine recipients. At 14 to 73 days after the second dose, adjusted vaccine effectiveness among ChAdOx1 nCoV-19 vaccine recipients was 58% (95% CI, 23 to 77) - considerably lower than that among BNT162b2 vaccine recipients. Infection-acquired immunity waned after 1 year in unvaccinated participants but remained consistently higher than 90% in those who were subsequently vaccinated, even in persons infected more than 18 months previously. CONCLUSIONS: Two doses of BNT162b2 vaccine were associated with high short-term protection against SARS-CoV-2 infection; this protection waned considerably after 6 months. Infection-acquired immunity boosted with vaccination remained high more than 1 year after infection. (Funded by the U.K. Health Security Agency and others; ISRCTN Registry number, ISRCTN11041050.).


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Prospective Studies , Vaccination
7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-323955

ABSTRACT

The COVID-19 vaccination programme commenced in the UK on 8th December 2020 primarily based on age;by 24 February 2021 approximately 93% of the English population aged 70-79 years had received at least 1 dose of either the Pfizer BioNTech or AstraZeneca vaccines. Using a nucleoprotein assay that detects antibodies following natural infection only and a spike assay that detects both infection and vaccine-induced responses, we aim to describe the impact of vaccination on SARS-CoV-2 antibody prevalence in English blood donors.

8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-323456

ABSTRACT

Background: In England, the reopening of universities in September 2020 coincided with a rapid increase in SARS-CoV-2 infection rates in university aged young adults. This study aimed to estimate SARS-CoV-2 antibody prevalence in students attending universities that had experienced a COVID-19 outbreak after reopening for the autumn term in September 2020.Methods: A cross-sectional serosurvey was conducted during 02-11 December 2020 in students aged ≤ 25 years across five universities in England. Blood samples for SARS-CoV-2 antibody testing were obtained using a self-sampling kit and analysed using the Abbott SARS-CoV-2 N antibody and/or an in-house receptor binding domain (RBD) assay. Findings: SARS-CoV-2 seroprevalence in 2,905 university students was 17.8% (95%CI, 16.5-19.3), ranging between 7.6%-29.7% across the five universities. Seropositivity was associated with being younger likely to represent first year undergraduates (aOR 3.2, 95% CI 2.0-4.9), living in halls of residence (aOR 2.1, 95% CI 1.7-2.7) and sharing a kitchen with an increasing number of students (shared with 4-7 individuals, aOR 1.43, 95%CI 1.12-1.82;shared with 8 or more individuals, aOR 1.53, 95% CI 1.04-2.24). Seropositivity was 49% in students living in halls of residence that reported high SARS-CoV-2 infection rates (>8%) during the autumn term.Interpretation: Despite large numbers of cases and outbreaks in universities, less than one in five students (17.8%) overall had SARS-CoV-2 antibodies at the end of the autumn term in England. In university halls of residence affected by a COVID-19 outbreak, however, nearly half the resident students became infected and developed SARS-CoV-2 antibodies.

9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-314792

ABSTRACT

Background: Many countries re-opened schools after national lockdown but little is known about the risk of SARS-CoV-2 infection and transmission in educational settings. Public Health England conducted six-month prospective surveillance in primary schools across England. Methods: The COVID-19 Surveillance in School KIDs (sKIDs) study included two arms: weekly nasal swabs for ≥4 weeks following partial reopening during the summer half-term (June to mid-July 2020) and blood sampling with nasal and throat swabs at the beginning and end of the summer half-term, and, following full reopening in September 2020, at the end of the autumn term (end-November 2020). Results: In round 1, 12,026 participants (59.1% students, 40.9% staff) in 131 schools had 43,091 swabs taken. Weekly SARS-CoV-2 infection rates were 3.9 (1/25,537;95% CI, 0.10-21.8) and 11.3 (2/17,554;95% CI, 1.4-41.2) per 100,000 students and staff. At recruitment, N-antibody positivity in 45 schools was 11.1% (91/817;95%CI, 9.2-13.5%) in students and 15.1% (209/1381;95%CI, 13.3-17.1%) in staff, similar to local community seroprevalence. Seropositivity was not associated with school attendance during lockdown or staff contact with students. Round 2 participation was 73.7% (1,619/2,198) and only five (4 students, 1 staff) seroconverted. In round 3, when 61.9% (1,361/2,198) of round 1 participants were re-tested, seroconversion rates were 3.4% (19/562;95%CI, 2.0-5.2) in students and 3.9% (36/930;95%CI, 2.7-5.3) in staff. Conclusions: SARS-CoV-2 infection rates, assessed using nasal swabs for acute infection and serum antibodies for prior infection, were low following partial and full reopening of primary schools in England.Funding Statement: This surveillance was funded by the Department of Health and Social Care (DHSC).Declaration of Interests: None to declare.Ethics Approval Statement: The surveillance protocol was approved by the Public Health England Research Ethics Governance Group (R&D REGG Ref: NR0209, 16 May 2020).

10.
Euro Surveill ; 27(1)2022 01.
Article in English | MEDLINE | ID: covidwho-1613512

ABSTRACT

Serum samples were collected pre- and post-booster vaccination with Comirnaty in 626 participants (aged ≥ 50 years) who had received two Comirnaty doses < 30 days apart, two Comirnaty doses ≥ 30 days apart or two Vaxzevria doses ≥ 30 days apart. Irrespective of primary vaccine type or schedule, spike antibody GMTs peaked 2-4 weeks after second dose, fell significantly ≤ 38 weeks later and rose above primary immunisation GMTs 2-4 weeks post-booster. Higher post-booster responses were observed with a longer interval between primary immunisation and boosting.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , London , SARS-CoV-2 , United Kingdom
11.
Nat Immunol ; 23(1): 40-49, 2022 01.
Article in English | MEDLINE | ID: covidwho-1585824

ABSTRACT

SARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3-11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.


Subject(s)
Antibodies, Viral/immunology , Coronavirus 229E, Human/immunology , Coronavirus OC43, Human/immunology , Cross Protection/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adaptive Immunity/immunology , Adult , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Child , Child, Preschool , Cross Reactions/immunology , Humans
12.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296775

ABSTRACT

ABSTRACT Background The role of educational settings on SARS-CoV-2 infection and transmission remains controversial. We investigated SARS-CoV-2 infection, seroprevalence and seroconversions rates in secondary schools during the 2020/21 academic year, which included the emergence of the more transmissible Alpha and Delta variants, in England. Methods The UK Health Security Agency (UKHSA) initiated prospective surveillance in 18 urban English secondary schools. Participants had nasal swabs for SARS-CoV-2 RT-PCR and blood sampling for SARS-CoV-2 Nucleoprotein and Spike protein antibodies at the start (Round 1: September-October 2020) and end (Round 2: December 2021) of the autumn term, when schools reopened after national lockdown was imposed in January 2021 (Round 3: March-April) and end of the academic year (Round 4: May-July). Findings We enrolled 2,314 participants (1277 students, 1037 staff). In-school testing identified 31 PCR-positive participants (20 students, 11 staff). Another 247 confirmed cases (112 students, 135 staff) were identified after linkage with national surveillance data, giving an overall positivity rate of 12.0% (278/2313;staff [14.1%, 146/1037] vs students [10.3%, 132/1276;p=0.006). Nucleoprotein-antibody seroprevalence increased for students and staff between Rounds 1-3 but changed little in Round 4, when the Delta variant was the dominant circulating strain. Overall, Nucleoprotein-antibody seroconversion was 18.4% (137/744) in staff and 18.8% (146/778) in students, while Spike-antibody seroconversion was higher in staff (72.8% (525/721) than students (21.3%, 163/764) because of vaccination. Interpretation SARS-CoV-2 infection and transmission in secondary schools remained low when community infection rates were low because of national lockdown, even after the emergence of the Delta variant Funding DHSC

13.
Nat Commun ; 12(1): 7217, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1565716

ABSTRACT

The UK prioritised delivery of the first dose of BNT162b2 (Pfizer/BioNTech) and AZD1222 (AstraZeneca) vaccines by extending the interval between doses up to 12 weeks. In 750 participants aged 50-89 years, we here compare serological responses after BNT162b2 and AZD1222 vaccination with varying dose intervals, and evaluate these against real-world national vaccine effectiveness (VE) estimates against COVID-19 in England. We show that antibody levels 14-35 days after dose two are higher in BNT162b2 recipients with an extended vaccine interval (65-84 days) compared with those vaccinated with a standard (19-29 days) interval. Following the extended schedule, antibody levels were 6-fold higher at 14-35 days post dose 2 for BNT162b2 than AZD1222. For both vaccines, VE was higher across all age-groups from 14 days after dose two compared to one dose, but the magnitude varied with dose interval. Higher dose two VE was observed with >6 week interval between BNT162b2 doses compared to the standard schedule. Our findings suggest higher effectiveness against infection using an extended vaccine schedule. Given global vaccine constraints these results are relevant to policymakers.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunization Schedule , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibody Formation , COVID-19 Vaccines/administration & dosage , England , Female , Humans , Male , Middle Aged
14.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-295014

ABSTRACT

Introduction SARS-CoV-2 serological studies have so far focused mainly on adults. Public Health England initiated prospective, longitudinal SARS-CoV-2 sero-surveillance in schools across England after the first national lockdown, which allowed comparison of child and adult responses to SARS-CoV-2 infection over time. Methods Staff and students had venepuncture for SARS-CoV-2 antibodies in school during June, July and December 2020. Blood samples were tested for nucleocapsid (Abbott) and receptor binding domain (RBD) antibodies (in-house assay), and student samples were additionally assessed for live virus neutralising activity. Results In June 2020, 1,344 staff and 835 students were tested. Overall, 11.5% (95% CI: 9.4-13.9) and 11.3% (95% CI: 9.2-13.6;p=0.88) of students had nucleoprotein and RBD antibodies, compared to 15.6% (95% CI: 13.7-17.6) and 15.3% (95% CI: 13.4-17.3;p=0.83) of staff. Live virus neutralising activity was detected in 79.8% (n=71/89) of nucleocapsid and 85.5% (71/83) of RBD antibody positive children. RBD antibodies correlated more strongly with neutralising antibodies (r s =0.7527;p<0.0001) than nucleocapsid antibodies (r s =0.3698;p<0.0001). A median of 24.4 weeks later, 58.2% (107/184) participants had nucleocapsid antibody seroreversion, compared to 20.9% (33/158) for RBD (p<0.001). Similar seroreversion rates were observed between staff and students for nucleocapsid (p=0.26) and RBD-antibodies (p=0.43). Nucleocapsid and RBD antibody quantitative results were significantly lower in staff compared to students (p=0.028 and <0.0001 respectively) at baseline, but not at 24 weeks (p=0.16 and p=0.37, respectively). Conclusion RBD antibodies correlated more strongly with live virus neutralising activity. Most seropositive students and staff retained RBD antibodies for >6 months after SARS-CoV-2 infection.

15.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-294620

ABSTRACT

SARS-CoV-2 infection is generally mild or asymptomatic in children but the biological basis for this is unclear. We studied the profile of antibody and cellular immunity in children aged 3-11 years in comparison with adults. Antibody responses against spike and receptor binding domain (RBD) were high in children and seroconversion boosted antibody responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Seroneutralisation assays against alpha, beta and delta SARS-CoV-2 variants demonstrated comparable neutralising activity between children and adults. T cell responses against spike were >2-fold higher in children compared to adults and displayed a T H 1 cytokine profile. SARS-CoV-2 spike-specific T cells were also detected in many seronegative children, revealing pre-existing responses that were cross-reactive with seasonal Alpha and Beta-coronaviruses. Importantly, all children retained high antibody titres and cellular responses at 6 months after infection whilst relative antibody waning was seen in adults. Spike-specific responses in children also remained broadly stable beyond 12 months. Children thus distinctly generate robust, cross-reactive and sustained immune responses after SARS-CoV-2 infection with focussed specificity against spike protein. These observations demonstrate novel features of SARS-CoV-2-specific immune responses in children and may provide insight into their relative clinical protection. Furthermore, this information will help to guide the introduction of vaccination regimens in the paediatric population.

16.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-294092

ABSTRACT

Background Most individuals with COVID-19 will recover without sequelae, but some will develop long- term multi-system impairments. The definition, duration, prevalence and symptoms associated with long COVID, however, have not been established. Methods Public Health England (PHE) initiated longitudinal surveillance of clinical and non-clinical healthcare workers for monthly blood sampling for SARS-CoV-2 antibodies in March 2020. Eight months after enrolment, participants completed an online questionnaire including 72 symptoms in the preceding month. Symptomatic mild-to-moderate cases with confirmed COVID-19 were compared with asymptomatic, seronegative controls. Multivariable logistic regression was used to identify independent symptoms associated with long COVID. Results All 2,147 participants were contacted and 1,671 (77.8%) completed the questionnaire, including 140 (8.4%) cases and 1,160 controls. At a median of 7.5 (IQR 7.1-7.8) months after infection, 20 cases (14.3%) had ongoing (4/140, 2.9%) or episodic (16/140, 11.4%) symptoms. We identified three clusters of symptoms associated with long COVID, those affecting the sensory (ageusia, anosmia, loss of appetite and blurred vision), neurological (forgetfulness, short-term memory loss and confusion/brain fog) and cardiorespiratory (chest tightness/pain, unusual fatigue, breathlessness after minimal exertion/at rest, palpitations) systems. The sensory cluster had the highest association with being a case (aOR 5.25, 95% CI 3.45-8.01). Dermatological, gynaecological, gastrointestinal or mental health symptoms were not significantly different between cases and controls. Conclusions Most persistent symptoms reported following mild COVID-19 were equally common in cases and controls. While all three clusters identified had a strong association with previous COVID-19 infection, the sensory cluster had the highest specificity and strength of association. Key points Compared to controls, we identified three clusters of symptoms affecting the sensory, neurological and cardiorespiratory systems that were more prevalent among cases. Notably, gastrointestinal and dermatological symptoms and symptoms related to mental health were as prevalent among cases as controls.

18.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293307

ABSTRACT

Background: Understanding the duration and effectiveness of infection and vaccine-acquired SARS-CoV-2 immunity is essential to inform pandemic policy interventions, including the timing of vaccine-boosters. We investigated this in our large prospective cohort of UK healthcare workers undergoing routine asymptomatic PCR testing. Methods We assessed vaccine effectiveness (VE) (up to 10-months after first dose) and infection-acquired immunity by comparing time to PCR-confirmed infection in vaccinated and unvaccinated individuals using a Cox regression-model, adjusted by prior SARS-CoV-2 infection status, vaccine-manufacturer/dosing-interval, demographics and workplace exposures. Results Of 35,768 participants, 27% (n=9,488) had a prior SARS-CoV-2 infection. Vaccine coverage was high: 97% had two-doses (79% BNT162b2 long-interval, 8% BNT162b2 short-interval, 8% ChAdOx1). There were 2,747 primary infections and 210 reinfections between 07/12/2020 and 21/09/2021. Adjusted VE (aVE) decreased from 81% (95% CI 68%-89%) 14-73 days after dose-2 to 46% (95% CI 22%-63%) >6-months;with no significant difference for short-interval BNT162b2 but significantly lower aVE (50% (95% CI 18%-70%) 14-73 days after dose-2 from ChAdOx1. Protection from infection-acquired immunity showed evidence of waning in unvaccinated follow-up but remained consistently over 90% in those who received two doses of vaccine, even in those infected over 15-months ago. Conclusion Two doses of BNT162b2 vaccination induce high short-term protection to SARS-CoV-2 infection, which wanes significantly after six months. Infection-acquired immunity boosted with vaccination remains high over a year after infection. Boosters will be essential to maintain protection in vaccinees who have not had primary infection to reduce infection and transmission in this population. Trial registration number ISRCTN11041050

19.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-292973

ABSTRACT

Importance: There are limited data on immune responses after COVID-19 vaccine boosters in individuals receiving primary immunisation with BNT162b2 (Pfizer-BioNTech) or AZD1222 (AstraZeneca) Objective: To assess SARS-CoV-2 antibody responses before and after booster vaccination with BNT162b2 in adults receiving two BNT162b2 or AZD1222 vaccine doses at least 6 months previously, as part of the United Kingdom national immunisation schedule Design: Prospective, cohort study Setting: London, England Participants: 750 immunocompetent adults aged ≥50 years Interventions: A single dose of BNT162b2 administered at least six months after primary immunisation with two doses of BNT162b2 given <30 days apart (BNT162b2-control) or ≥30 days apart (BNT162b2-extended) compared to AZD1222 given ≥30 days apart (AZD1222-extended) Main Outcome and Measures: SARS-CoV-2 spike protein antibody geometric mean titres (GMTs) before and 2-4 weeks after booster Results: Of 750 participants, 626 provided serum samples for up to 38 weeks after their second vaccine dose. Antibody GMTs peaked at 2-4 weeks after the second dose, before declining by 68% at 36-38 weeks after dose 2 for BNT162b2-control participants, 85% at 24-29 weeks for BNT162b2-extended participants and 78% at 24-29 weeks for AZD1222-extended participants. Antibody GMTs was highest in BNT162b2-extended participants (942 [95%CI, 797-1113]) than AZD1222-extended (183 [124-268]) participants at 24-29 weeks or BNT162b2-control participants at 36-38 weeks (208;95%CI, 150-289). At 2-4 weeks after booster, GMTs were significantly higher than after primary vaccination in all three groups: 18,104 (95%CI, 13,911-23,560;n=47) in BNT162b2-control (76.3-fold), 13,980 (11,902-16,421;n=118) in BNT162b2-extended (15.9-fold) and 10,799 (8,510-13,704;n=43) in AZD1222-extended (57.2-fold) participants. BNT162b2-control participants (median:262 days) had a longer interval between primary and booster doses than BNT162b2-extended or AZD1222-extended (both median:186 days) participants. Conclusions and Relevance: We observed rapid serological responses to boosting with BNT162b2, irrespective of vaccine type or schedule used for primary immunisation, with higher post-booster responses with longer interval between primary immunisation and boosting. Boosters will not only provide additional protection for those at highest risk of severe COVID-19 but also prevent infection and, therefore, interrupt transmission, thereby reducing infections rates in the population. Ongoing surveillance will be important for monitoring the duration of protection after the booster.

20.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-292906

ABSTRACT

We present a comprehensive analysis of antibody and cellular responses in children aged 12-16 years who received COVID-19 vaccination with ChAdOx1 (n=6) or mRNA vaccine (mRNA-1273 or BNT162b2, n=9) using a 12-week extended-interval schedule. mRNA vaccination of seropositive children induces high antibody levels, with one dose, but a second dose is required in infection-naïve children. Following a second ChAdOx1 dose, antibody titres were higher than natural infection, but lower than mRNA vaccination. Vaccination induced live virus neutralising antibodies against Alpha, Beta and Delta variants, however, a second dose is required in infection-naïve children. We found higher T-cell responses following mRNA vaccination than ChAdOx1. Phenotyping of responses showed predominantly early effector-memory CD4 T cell populations, with a type-1 cytotoxic cytokine signature, with IL-10. These data demonstrate mRNA vaccination induces a co-ordinated superior antibody and robust cellular responses in children. Seronegative children require a prime-boost regime for optimal protection.

SELECTION OF CITATIONS
SEARCH DETAIL