ABSTRACT
The clinical course of coronavirus disease 2019 (COVID-19) is often complicated by the onset of venous thrombosis and thromboembolism (VTE), encompassing also pulmonary thrombosis. Recent statistics attests that the cumulative frequency of VTE can be as high as 30% in COVID-19 hospitalized patients, increasing to nearly 40 to 70% (depending on systematic screening) in those with severe illness, mechanical ventilation, or intensive care unit admission. The risk of venous thrombosis seems mostly limited to the active phase of disease, and is directly associated with some genetic (i.e., inherited prothrombotic predisposition) and demographical factors (male sex, overweight/obesity), disease severity (risk increasing progressively from hospitalization to development of severe illness, being the highest in patients needing mechanical ventilation and/or intensive care), presence and extent of pulmonary disease, coexistence of multiple risk factors (immobilization, mechanical ventilation, co- or superinfections), along with increased values of inflammatory and thrombotic biomarkers. At least three different phenotypes of pulmonary thrombosis may develop in COVID-19 patients, one caused by typical embolization from peripheral venous thrombosis (e.g., deep vein thrombosis), a second type triggered by local inflammation of nearby pulmonary tissue, and a third one mostly attributable to the prothrombotic state consequent to the pronounced systemic inflammatory response (i.e., the so-called cytokine storm) that is frequently observed in COVID-19. Although the pathogenesis of these three conditions has different features, their discrimination is essential for diagnostic and therapeutic purposes. The prognosis of COVID-19 patients who develop pulmonary thrombosis is also considerably worse than those who do not, thus probably needing frequent monitoring and more aggressive therapeutic management.
ABSTRACT
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VoC) Omicron (B.1.1.529) has rapidly spread around the world, presenting a new threat to global public human health. Due to the large number of mutations accumulated by SARS-CoV-2 Omicron, concerns have emerged over potentially reduced diagnostic accuracy of reverse-transcription polymerase chain reaction (RT-qPCR), the gold standard diagnostic test for diagnosing coronavirus disease 2019 (COVID-19). Thus, we aimed to assess the impact of the currently endemic Omicron sublineages BA.4 and BA.5 on the integrity and sensitivity of RT-qPCR assays used for coronavirus disease 2019 (COVID-19) diagnosis via in silico analysis. We employed whole genome sequencing data and evaluated the potential for false negatives or test failure due to mismatches between primers/probes and the Omicron VoC viral genome. METHODS: In silico sensitivity of 12 RT-qPCR tests (containing 30 primers and probe sets) developed for detection of SARS-CoV-2 reported by the World Health Organization (WHO) or available in the literature, was assessed for specifically detecting SARS-CoV-2 Omicron BA.4 and BA.5 sublineages, obtained after removing redundancy from publicly available genomes from National Center for Biotechnology Information (NCBI) and Global Initiative on Sharing Avian Influenza Data (GISAID) databases. Mismatches between amplicon regions of SARS-CoV-2 Omicron VoC and primers and probe sets were evaluated, and clustering analysis of corresponding amplicon sequences was carried out. RESULTS: From the 1164 representative SARS-CoV-2 Omicron VoC BA.4 sublineage genomes analyzed, a substitution in the first five nucleotides (C to T) of the amplicon's 3'-end was observed in all samples resulting in 0% sensitivity for assays HKUnivRdRp/Hel (mismatch in reverse primer) and CoremCharite N (mismatch in both forward and reverse primers). Due to a mismatch in the forward primer's 5'-end (3-nucleotide substitution, GGG to AAC), the sensitivity of the ChinaCDC N assay was at 0.69%. The 10 nucleotide mismatches in the reverse primer resulted in 0.09% sensitivity for Omicron sublineage BA.4 for Thai N assay. Of the 1926 BA.5 sublineage genomes, HKUnivRdRp/Hel assay also had 0% sensitivity. A sensitivity of 3.06% was observed for the ChinaCDC N assay because of a mismatch in the forward primer's 5'-end (3-nucleotide substitution, GGG to AAC). Similarly, due to the 10 nucleotide mismatches in the reverse primer, the Thai N assay's sensitivity was low at 0.21% for sublineage BA.5. Further, eight assays for BA.4 sublineage retained high sensitivity (more than 97%) and 9 assays for BA.5 sublineage retained more than 99% sensitivity. CONCLUSION: We observed four assays (HKUnivRdRp/Hel, ChinaCDC N, Thai N, CoremCharite N) that could potentially result in false negative results for SARS-CoV-2 Omicron VoCs BA.4 and BA.5 sublineages. Interestingly, CoremCharite N had 0% sensitivity for Omicron Voc BA.4 but 99.53% sensitivity for BA.5. In addition, 66.67% of the assays for BA.4 sublineage and 75% of the assays for BA.5 sublineage retained high sensitivity. Further, amplicon clustering and additional substitution analysis along with sensitivity analysis could be used for the modification and development of RT-qPCR assays for detecting SARS-CoV-2 Omicron VoC sublineages.
ABSTRACT
OBJECTIVES: This proof of concept study was aimed to validate the hypothesis that the time of positivization of SARS-CoV-2 self-performed rapid diagnostic tests (RDTs) may reflect the actual viral load in the specimen. METHODS: A SARS-CoV-2 positive sample with high viral load was diluted and concomitantly assayed with molecular assay (Xpert Xpress SARS-CoV-2) and RDT (COVID-VIRO ALL IN RDT). The (mean cycle threshold; Ct) values and RDT positivization times of these dilutions were plotted and interpolated by calculating the best fit. The parameters of this equation were then used for converting the positivization times into RDT-estimated SARS-CoV-2 Ct values in routine patient samples. RESULTS: The best fit between measured and RDT-estimated Ct values could be achieved with a 2-degree polynomial curve. The RDT-estimated Ct values exhibited high correlation (r=0.996) and excellent Deming fit (y=1.01 × x - 0.18) with measured Ct values. In 30 consecutive patients with positive RDT test, the correlation between RDT positivization time and measured Ct value was r=0.522 (p=0.003). The correlation of RDT-estimated and measured Ct values slightly improved to 0.577 (Deming fit: y=0.44 × x + 11.08), displaying a negligible bias (1.0; 95% CI, -0.2 to 2.2; p=0.105). Concordance of RDT-estimated and measured Ct values at the <20 cut-off was 80%, with 0.84 sensitivity and 0.73 specificity. CONCLUSIONS: This proof of concept study demonstrates the potential feasibility of using RDTs for garnering information on viral load in patients with acute SARS-CoV-2 infection.
ABSTRACT
Due to the many technical limitations of molecular biology, the possibility to sustain enormous volumes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic testing relies strongly on the use of antigen rapid diagnostic tests (Ag-RDTs). Besides a limited analytical sensitivity, the manually intensive test procedures needed for performing these tests, very often performed by unskilled personnel or by the patients themselves, may contribute to considerably impair their diagnostic accuracy. We provide here an updated overview on the leading preanalytical drawbacks that may impair SARS-CoV-2 Ag-RDT accuracy, and which encompass lower diagnostic sensitivity in certain age groups, in asymptomatic subjects and those with a longer time from symptoms onset, in vaccine recipients, in individuals not appropriately trained to their usage, in those recently using oral or nasal virucidal agents, in oropharyngeal swabs and saliva, as well as in circumstances when instructions provided by the manufacturers are unclear, incomplete or scarcely readable and intelligible. Acknowledging these important preanalytical limitations will lead the way to a better, more clinically efficient and even safer use of this important technology, which represents an extremely valuable resource for management of the ongoing pandemic.
ABSTRACT
OBJECTIVES: This study investigated the feasibility and clinical value of using a novel, automated and high-throughput SARS-CoV-2 Interferon Gamma Release Assay (IGRA), combined with total anti-SARS-CoV-2 antibodies assessment, for evaluating the immune response after bivalent BNT162b2 vaccination. METHODS: A cohort of healthcare workers, who already underwent primary vaccination and boosting with monovalent BNT162b2 vaccine, received a booster dose of the new BNT162b2 bivalent formulation. Blood samples were taken immediately before vaccination (T0) and 1 month afterwards (T1). Humoral and cellular immunity were assayed with Roche Elecsys Anti-SARS-CoV-2 and Roche Elecsys IGRA SARS-CoV-2, respectively. RESULTS: The study population consisted of 51 subjects (median age: 43 years; 51% females). Total anti-SARS-CoV-2 antibodies and IGRA SARS-CoV-2 values increased at T1 from 9,050 to 25,000 BAU/mL (p<0.001), and from 0.44 to 0.78 IU/mL (p=0.385), accounting for median increase of 2.0 and 1.6 folds, respectively. Increased T1 values of total anti-SARS-CoV-2 antibodies and IGRA SARS-CoV-2 were recorded in 100% and 68.6% subjects, respectively. In those with baseline values below the median, post-vaccine levels displayed larger increases of 3.3 and 5.1 folds for anti-SARS-CoV-2 total antibodies and IGRA SARS-CoV-2, respectively. The variation of total anti-SARS-CoV-2 antibodies was inversely associated with their T0 values (r=-0.97; p<0.001), whilst that of IGRA SARS-CoV-2 was inversely associated with its T0 value (r=-0.58; p<0.001). No other signifcant associations were found with demographical or clinical variables, including side effects. CONCLUSIONS: The bivalent BNT162b2 vaccine booster enhances humoral and cellular immunity against SARS-CoV-2, especially in recipients with lower baseline biological protection.
Subject(s)
COVID-19 , Thrombosis , Humans , COVID-19/complications , Hemostasis , Thrombosis/etiology , Thrombosis/prevention & controlABSTRACT
Postviral syndrome is a wellknown medical condition characterized by different levels of physical, cognitive, and emotional impairment that may persist with fluctuating severity after recovering from an acute viral infection. Unsurprisingly, COVID19 may also be accompanied by medium- and longterm clinical sequelae after recovering from a SARSCoV2 infection. Although many clinical definitions have been provided, "longCOVID" can be defined as a condition occurring in patients with a history of SARSCoV2 infection, developing 3 months from the symptoms onset, persisting for at least 2 months, and not explained by alternative diagnoses. According to recent global analyses, the cumulative prevalence of longCOVID seems to range between 9% and 63%, and is up to 6fold higher than that of similar postviral infection conditions. LongCOVID primarily encompasses the presence of at least 1 symptom, such as fatigue, dyspnea, cognitive impairment / brain fog, postexertional malaise, memory issues, musculoskeletal pain / spasms, cough, sleep disturbances, tachycardia / palpitations, altered smell / taste perception, headache, chest pain, and depression. The most important demographic and clinical predictors to date are female sex, older age, cigarette smoking, preexisting medical conditions, lack of COVID19 vaccination, infection with preOmicron SARSCoV2 variants, number of acute phase symptoms, viral load, severe / critical COVID19 illness, as well as invasive mechanical ventilation. Concerning the care for longCOVID patients, the greatest challenge is the fact that this syndrome cannot be considered a single clinical entity, and thus it needs an integrated multidisciplinary management, specifically tailored to the type and severity of symptoms.
ABSTRACT
As an inherited disorder characterized by severe pulmonary disease, cystic fibrosis could be considered a comorbidity for coronavirus disease 2019. Instead, current clinical evidence seems to be heading in the opposite direction. To clarify whether host factors expressed by the Cystic Fibrosis epithelia may influence coronavirus disease 2019 progression, here we describe the expression of SARS-CoV-2 receptors in primary airway epithelial cells. We show that angiotensin converting enzyme 2 (ACE2) expression and localization are regulated by Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Consistently, our results indicate that dysfunctional CFTR channels alter susceptibility to SARS-CoV-2 infection, resulting in reduced viral entry and replication in Cystic Fibrosis cells. Depending on the pattern of ACE2 expression, the SARS-CoV-2 spike (S) protein induced high levels of Interleukin 6 in healthy donor-derived primary airway epithelial cells, but a very weak response in primary Cystic Fibrosis cells. Collectively, these data support that Cystic Fibrosis condition may be at least partially protecting from SARS-CoV-2 infection.
Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Cystic Fibrosis , SARS-CoV-2 , Virus Internalization , Humans , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Down-Regulation , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus ReplicationABSTRACT
We evaluated the performance of Fujirebio Lumipulse G SARS-CoV-2 Ag chemiluminescent immunoassay. A nasopharyngeal swab was collected from 160 subjects and assayed simultaneously with Fujirebio Lumipulse G SARS-CoV-2 Ag and Altona Diagnostics RealStar SARS-CoV-2 RT-PCR assays. Using 0.60 pg/mL diagnostic threshold, Fujirebio Lumipulse G SARS-CoV-2 Ag displayed 0.88 area under the curve, 0.88 sensitivity and 0.75 specificity compared to molecular testing. The area under the curve increased to 1.00 after excluding samples with low viral load (i.e., cycle threshold values between 25-37). Thus, this chemiluminescent immunoassay could be used for rapid identification of many subjects with high nasopharyngeal SARS-CoV-2 viral load.
Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Immunoassay , Sensitivity and Specificity , Antigens, ViralABSTRACT
OBJECTIVES: Since the external validation of severe acute respiratory syndrome coronavirus 2 antigen rapid diagnostic tests (SARS-CoV-2 RDT-Ags) is a necessary requisite before they can be introduced into routine clinical practice, this study reports the results of a real-world assessment of the clinical performance of the new COVID-VIRO ALL IN device. METHODS: The study population consisted in 165 outpatients (median age: 43 years, range: 14-68 years; 66.1% females) who had paired nasal and nasopharyngeal samples collected upon hospital presentation. The samples were concomitantly tested with the AAZ-LMB COVID-VIRO ALL IN SARS-CoV-2 RDT-Ag and with Cepheid Xpert Xpress SARS-CoV-2 real-time reverse transcription polymerase chain reaction (RT-PCR). RESULTS: The number of subjects with positive RT-PCR results (i.e., mean Ct value <45) was 116 (70.3%), 109 (66.1%) and 86 (52.1%) with mean Ct values <37 and <30, respectively. In all RT-PCR positive samples, COVID-VIRO ALL IN displayed 78.8% agreement, 0.698 sensitivity, 1.000 specificity, 0.583 negative predictive value (NPV) and 1.000 positive predictive value (PPV) compared to RT-PCR. The median Ct value of samples testing positive with COVID-VIRO ALL IN was significantly lower than those testing negative (22.8 vs. 32.2; p<0.001). In samples with high viral load (i.e., Ct value <30), COVID-VIRO ALL IN displayed 92.1% agreement, 0.895 sensitivity, 0.949 specificity, 0.983 NPV and 0.951 PPV compared to RT-PCR. CONCLUSIONS: Although the diagnostic performance of COVID-VIRO ALL IN do not exactly match those of the manufacturer, its high NPV in high viral load samples would enable fast-track and rapid identification of highly contagious subjects.