Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.08.491108

ABSTRACT

SARS-CoV-2 Omicron sublineages carry distinct spike mutations and represent an antigenic shift resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters result in potent plasma neutralizing activity against Omicron BA.1 and BA.2 and that breakthrough infections, but not vaccination-only, induce neutralizing activity in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1 and BA.2 receptor-binding domains whereas Omicron primary infections elicit B cells of narrow specificity. While most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant antibody, that is unaffected by any Omicron lineage spike mutations and is a strong candidate for clinical development.


Subject(s)
Breakthrough Pain
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1175516.v1

ABSTRACT

The emergence of the highly-transmissible B.1.1.529 Omicron variant of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is concerning for antibody countermeasure efficacy because of the number of mutations in the spike protein. Here, we tested a panel of anti-receptor binding domain monoclonal antibodies (mAbs) corresponding to those in clinical use by Vir Biotechnology (S309, the parent mAb of VIR-7831 [Sotrovimab]), AstraZeneca (COV2-2196 and COV2-2130, the parent mAbs of AZD8895 and AZD1061), Regeneron (REGN10933 and REGN10987), Lilly (LY-CoV555 and LY-CoV016), and Celltrion (CT-P59) for their ability to neutralize an infectious B.1.1.529 Omicron isolate. Several mAbs (LY-CoV555, LY-CoV016, REGN10933, REGN10987, and CT-P59) completely lost neutralizing activity against B.1.1.529 virus in both Vero-TMPRSS2 and Vero-hACE2-TMPRSS2 cells, whereas others were reduced (COV2-2196 and COV2-2130 combination, ~12-fold decrease) or minimally affected (S309). Our results suggest that several, but not all, of the antibodies in clinical use may lose efficacy against the B.1.1.529 Omicron variant.


Subject(s)
Severe Acute Respiratory Syndrome
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.21.21268197

ABSTRACT

Understanding who is at risk of progression to severe COVID-19 is key to effective treatment. We studied correlates of disease severity in the COMET-ICE clinical trial that randomized 1:1 to placebo or to sotrovimab, a monoclonal antibody for the treatment of SARS-CoV-2 infection. Several laboratory parameters identified study participants at greater risk of severe disease, including a high neutrophil-lymphocyte ratio (NLR), a negative SARS-CoV-2 serologic test and whole blood transcriptome profiles. Sotrovimab treatment in these groups was associated with normalization of NLR and the transcriptomic profile, and with a decrease of viral RNA in nasopharyngeal samples. Transcriptomics provided the most sensitive detection of participants who would go on to be hospitalized or die. To facilitate timely measurement, we identified a 10-gene signature with similar predictive accuracy. In summary, we identified markers of risk for disease progression and demonstrated that normalization of these parameters occurs with antibody treatment of established infection.


Subject(s)
COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.12.472269

ABSTRACT

The recently emerged SARS-CoV-2 Omicron variant harbors 37 amino acid substitutions in the spike (S) protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody therapeutics. Here, we show that the Omicron RBD binds to human ACE2 with enhanced affinity relative to the Wuhan-Hu-1 RBD and acquires binding to mouse ACE2. Severe reductions of plasma neutralizing activity were observed against Omicron compared to the ancestral pseudovirus for vaccinated and convalescent individuals. Most (26 out of 29) receptor-binding motif (RBM)-directed monoclonal antibodies (mAbs) lost in vitro neutralizing activity against Omicron, with only three mAbs, including the ACE2-mimicking S2K146 mAb, retaining unaltered potency. Furthermore, a fraction of broadly neutralizing sarbecovirus mAbs recognizing antigenic sites outside the RBM, including sotrovimab, S2X259 and S2H97, neutralized Omicron. The magnitude of Omicron-mediated immune evasion and the acquisition of binding to mouse ACE2 mark a major SARS-CoV-2 mutational shift. Broadly neutralizing sarbecovirus mAbs recognizing epitopes conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.

5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.13.21256973

ABSTRACT

BACKGROUNDSarilumab (anti-interleukin-6 receptor- monoclonal antibody) may attenuate the inflammatory response in Covid-19. METHODSWe performed an adaptive, phase 2/3, randomized, double-blind, placebo-controlled trial of intravenous sarilumab 200 mg or 400 mg in adults hospitalized with Covid-19. The phase 3 primary analysis population (cohort 1) was patients with critical Covid-19 receiving mechanical ventilation (MV) randomized to sarilumab 400 mg or placebo. The primary end point for phase 3 was the proportion of patients with [≥]1-point improvement in clinical status from baseline to day 22. RESULTSFour-hundred fifty-seven (457) and 1365 patients were randomized and treated in phases 2 and 3, respectively. Among phase 3 critical patients receiving MV (n=289; 34.3% on corticosteroids), the proportion with [≥]1-point improvement in clinical status (alive not receiving MV) at day 22 was 43.2% in sarilumab 400 mg and 35.5% in placebo (risk difference [RD] +7.5%; 95% confidence interval [CI], -7.4 to 21.3; P=0.3261), representing a relative risk improvement of 21.7%. Day 29 all-cause mortality was 36.4% in sarilumab 400 mg versus 41.9% in placebo (RD -5.5%; 95% CI, -20.2 to 8.7; relative risk reduction 13.3%). In post hoc analyses pooling phase 2 and 3 critical patients receiving MV, the hazard ratio (HR) for death in sarilumab 400 mg compared with placebo was 0.76 (95% CI, 0.51 to 1.13) overall, improving to 0.49 (95% CI, 0.25 to 0.94) in patients receiving corticosteroids at baseline. CONCLUSIONIn hospitalized patients with Covid-19 receiving MV, numerical benefits with sarilumab did not achieve statistical significance, but benefit may be greater in patients receiving corticosteroids. A larger study is required to confirm this observed numerical benefit. (ClinicalTrials.gov number, NCT04315298)


Subject(s)
COVID-19
6.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-448370.v1

ABSTRACT

Rapidly-emerging variants jeopardize antibody-based countermeasures against SARS-CoV-2. While recent cell culture experiments have demonstrated loss of potency of several anti-spike neutralizing antibodies against SARS-CoV-2 variant strains1-3, the in vivo significance of these results remains uncertain. Here, using a panel of monoclonal antibodies (mAbs) corresponding to many in advanced clinical development by Vir Biotechnology, AbbVie, AstraZeneca, Regeneron, and Lilly we report the impact on protection in animals against authentic SARS-CoV-2 variants including WA1/2020 strains, a B.1.1.7 isolate, and chimeric strains with South African (B.1.351) or Brazilian (B.1.1.28) spike genes. Although some individual mAbs showed reduced or abrogated neutralizing activity against B.1.351 and B.1.1.28 viruses with E484K spike protein mutations in cell culture, low prophylactic doses of mAb combinations protected against infection in K18-hACE2 transgenic mice, 129S2 immunocompetent mice, and hamsters without emergence of resistance. Two exceptions were mAb LY-CoV555 monotherapy which lost all protective activity in vivo, and AbbVie 2B04/47D11, which showed partial loss of activity. When administered after infection as therapy, higher doses of mAb cocktails protected in vivo against viruses displaying a B.1.351 spike gene. Thus, many, but not all, of the antibody products with Emergency Use Authorization should retain substantial efficacy against the prevailing SARS-CoV-2 variant strains.

7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.03.438258

ABSTRACT

Investigating the mechanisms of SARS-CoV-2 cellular infection is key to better understand COVID-19 immunity and pathogenesis. Infection, which involves both cell attachment and membrane fusion, relies on the ACE2 receptor that is paradoxically found at low levels in the respiratory tract, suggesting that additional mechanisms facilitating infection may exist. Here we show that C-type lectin receptors, DC-SIGN, L-SIGN and the sialic acid-binding Ig-like lectin 1 (SIGLEC1) function as auxiliary receptors by enhancing ACE2-mediated infection and modulating the neutralizing activity of different classes of spike-specific antibodies. Antibodies to the N-terminal domain (NTD) or to the conserved proteoglycan site at the base of the Receptor Binding Domain (RBD), while poorly neutralizing infection of ACE2 over-expressing cells, effectively block lectin-facilitated infection. Conversely, antibodies to the Receptor Binding Motif (RBM), while potently neutralizing infection of ACE2 over-expressing cells, poorly neutralize infection of cells expressing DC-SIGN or L-SIGN and trigger fusogenic rearrangement of the spike promoting cell-to-cell fusion. Collectively, these findings identify a lectin-dependent pathway that enhances ACE2-dependent infection by SARS-CoV-2 and reveal distinct mechanisms of neutralization by different classes of spike-specific antibodies.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL