Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Signal Transduct Target Ther ; 6(1): 414, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1556321

ABSTRACT

Azvudine (FNC) is a nucleoside analog that inhibits HIV-1 RNA-dependent RNA polymerase (RdRp). Recently, we discovered FNC an agent against SARS-CoV-2, and have taken it into Phase III trial for COVID-19 patients. FNC monophosphate analog inhibited SARS-CoV-2 and HCoV-OC43 coronavirus with an EC50 between 1.2 and 4.3 µM, depending on viruses or cells, and selective index (SI) in 15-83 range. Oral administration of FNC in rats revealed a substantial thymus-homing feature, with FNC triphosphate (the active form) concentrated in the thymus and peripheral blood mononuclear cells (PBMC). Treating SARS-CoV-2 infected rhesus macaques with FNC (0.07 mg/kg, qd, orally) reduced viral load, recuperated the thymus, improved lymphocyte profiles, alleviated inflammation and organ damage, and lessened ground-glass opacities in chest X-ray. Single-cell sequencing suggested the promotion of thymus function by FNC. A randomized, single-arm clinical trial of FNC on compassionate use (n = 31) showed that oral FNC (5 mg, qd) cured all COVID-19 patients, with 100% viral ribonucleic acid negative conversion in 3.29 ± 2.22 days (range: 1-9 days) and 100% hospital discharge rate in 9.00 ± 4.93 days (range: 2-25 days). The side-effect of FNC is minor and transient dizziness and nausea in 16.12% (5/31) patients. Thus, FNC might cure COVID-19 through its anti-SARS-CoV-2 activity concentrated in the thymus, followed by promoted immunity.


Subject(s)
Antiviral Agents/administration & dosage , Azides/administration & dosage , COVID-19/drug therapy , Deoxycytidine/analogs & derivatives , SARS-CoV-2/metabolism , Thymus Gland , Adult , Aged , Aged, 80 and over , Animals , Coronavirus OC43, Human/metabolism , Deoxycytidine/administration & dosage , Female , Humans , Male , Middle Aged , Rats , Thymus Gland/metabolism , Thymus Gland/virology
2.
Cell Res ; 31(1): 17-24, 2021 01.
Article in English | MEDLINE | ID: covidwho-953056

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic worldwide. Currently, however, no effective drug or vaccine is available to treat or prevent the resulting coronavirus disease 2019 (COVID-19). Here, we report our discovery of a promising anti-COVID-19 drug candidate, the lipoglycopeptide antibiotic dalbavancin, based on virtual screening of the FDA-approved peptide drug library combined with in vitro and in vivo functional antiviral assays. Our results showed that dalbavancin directly binds to human angiotensin-converting enzyme 2 (ACE2) with high affinity, thereby blocking its interaction with the SARS-CoV-2 spike protein. Furthermore, dalbavancin effectively prevents SARS-CoV-2 replication in Vero E6 cells with an EC50 of ~12 nM. In both mouse and rhesus macaque models, viral replication and histopathological injuries caused by SARS-CoV-2 infection are significantly inhibited by dalbavancin administration. Given its high safety and long plasma half-life (8-10 days) shown in previous clinical trials, our data indicate that dalbavancin is a promising anti-COVID-19 drug candidate.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Teicoplanin/analogs & derivatives , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Caco-2 Cells , Chlorocebus aethiops , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Protein Binding/drug effects , Teicoplanin/pharmacokinetics , Teicoplanin/pharmacology , Vero Cells
3.
Hong Kong Journal of Emergency Medicine ; : 1024907920969326, 2020.
Article | Sage | ID: covidwho-903988

ABSTRACT

Background:An outbreak of coronavirus disease 2019 (COVID-19) took place in Wuhan, China, by the end of 2019, and the disease continues to spread all over the world. The number of patients is increasing rapidly, a large number of infected patients is critically ill, and the mortality is high. However, information on COVID-19 patients is limited, and its clinical characteristics have not been fully studied.Objectives:To compare the performances of point-of-care lung ultrasound (LUS) and bedside chest X-ray in assessing the condition of COVID-19 patients with acute respiratory distress syndrome (ARDS).Methods:This observational study enrolled 42 COVID-19 patients with ARDS who were admitted to the Department of Critical Care Medicine of the Wuhan Union Hospital from February to April 2020. The point-of-care LUS characteristics of the COVID-19 patients with ARDS were summarized, and the performances of LUS and bedside chest X-ray in assessing the patient?s condition were compared.Results:Most of the 42 patients were elderly individuals with chronic clinical diseases. The proportion of patients older than 60?years old was 85.7%. All patients were given invasive mechanical ventilation;eight (19.0%) of them received venovenous extracorporeal membrane oxygenation support. LUS has evident advantages in detecting lung consolidation, patchy shadows, and pleural thickening, and pleural line changes in particular. The receiver operating characteristic analysis indicated that the sensitivity, Youden index, and kappa value for detecting COVID-19 patients with ARDS were higher for LUS than the chest X-ray.Conclusion:LUS has better diagnostic accuracy and sensitivity in COVID-19 patients with ARDS than the chest X-ray.

SELECTION OF CITATIONS
SEARCH DETAIL