Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Adv Healthc Mater ; 11(14): e2200283, 2022 07.
Article in English | MEDLINE | ID: covidwho-1843840


The eye is susceptible to viral infections, causing severe ocular symptoms or even respiratory diseases. Methods capable of protecting the eye from external viral invasion in a long-term and highly effective way are urgently needed but have been proved to be extremely challenging. Here, a strategy of forming a long-acting protective ocular surface is described by instilling adhesive dual-antiviral nanoparticles. Taking pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a model virus, antiviral agent-loaded nanoparticles are coated with a "double-lock" hybrid cell membrane abundant with integrin-ß1 and angiotensin converting enzyme II (ACE2). After instillation, the presence of integrin-ß1 endows coated nanoparticles with steady adhesion via specific binding to Arg-Gly-Asp sequence on the fibronectin of ocular epithelium, achieving durable retention on the ocular surface. In addition to loaded inhibitors, the exposure of ACE2 can trap SARS-CoV-2 and subsequently neutralize the associated spike protein, playing a dual antiviral effect of the resulting nanoparticles. Adhesive dual-antiviral nanoparticles enabled by coating with a "double-lock" hybrid cell membrane could be a versatile platform for topical long-acting protection against viral infection of the eye.

Antiviral Agents , COVID-19 , Eye Diseases , Eye , Nanoparticles , Adhesives/pharmacology , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , COVID-19/drug therapy , Eye/drug effects , Eye/virology , Eye Diseases/prevention & control , Eye Diseases/virology , Humans , Integrins , SARS-CoV-2
Nano Today ; 40: 101280, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1386357


New vaccine technologies are urgently needed to produce safe and effective vaccines in a more timely manner to prevent future infectious disease pandemics. Here, we describe erythrocyte-mediated systemic antiviral immunization, a versatile vaccination strategy that boosts antiviral immune responses by using erythrocytes decorated with virus-mimetic nanoparticles carrying a viral antigen and a Toll-like receptor (TLR) agonist. As a proof of concept, polydopamine nanoparticles were synthesized via a simple in situ polymerization in which the nanoparticles were conjugated with the SARS-CoV-2 spike protein S1 subunit and the TLR7/8 agonist R848. The resulting SARS-CoV-2 virus-mimetic nanoparticles were attached to erythrocytes via catechol groups on the nanoparticle. Erythrocytes naturally home to the spleen and interact with the immune system. Injection of the nanoparticle-decorated erythrocytes into mice resulted in greater maturation and activation of antigen-presenting cells, humoral and cellular immune responses in the spleen, production of S1-specific immunoglobulin G (IgG) antibodies, and systemic antiviral T cell responses than a control group treated with the nanoparticles alone, with no significant negative side effects. These results show that erythrocyte-mediated systemic antiviral immunization using viral antigen- and TLR agonist-presenting polydopamine nanoparticles-a generalizable method applicable to many viral infections-is effective new approach to developing vaccines against severe infectious diseases.