Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add filters

Year range
1.
Signal Transduct Target Ther ; 7(1): 7, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1606287

ABSTRACT

Activation-induced cytidine deaminase (AID) initiates class-switch recombination and somatic hypermutation (SHM) in antibody genes. Protein expression and activity are tightly controlled by various mechanisms. However, it remains unknown whether a signal from the extracellular environment directly affects the AID activity in the nucleus where it works. Here, we demonstrated that a deubiquitinase USP10, which specifically stabilizes nuclear AID protein, can translocate into the nucleus after AKT-mediated phosphorylation at its T674 within the NLS domain. Interestingly, the signals from BCR and TLR1/2 synergistically promoted this phosphorylation. The deficiency of USP10 in B cells significantly decreased AID protein levels, subsequently reducing neutralizing antibody production after immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or human immunodeficiency virus type 1 (HIV-1) nanoparticle vaccines. Collectively, we demonstrated that USP10 functions as an integrator for both BCR and TLR signals and directly regulates nuclear AID activity. Its manipulation could be used for the development of vaccines and adjuvants.


Subject(s)
AIDS Vaccines/immunology , B-Cell Activating Factor/immunology , COVID-19 Vaccines/immunology , Cytidine Deaminase/immunology , HIV-1/immunology , Nanoparticles , SARS-CoV-2/immunology , Signal Transduction/immunology , Ubiquitin Thiolesterase/immunology , Ubiquitination/immunology , AIDS Vaccines/genetics , Animals , B-Cell Activating Factor/genetics , COVID-19 Vaccines/genetics , Cytidine Deaminase/genetics , HEK293 Cells , HIV-1/genetics , Humans , Mice , Mice, Knockout , SARS-CoV-2/genetics , Signal Transduction/genetics , Ubiquitin Thiolesterase/genetics
2.
Eur Radiol ; 2022 Jan 06.
Article in English | MEDLINE | ID: covidwho-1606144

ABSTRACT

BACKGROUND: Main challenges for COVID-19 include the lack of a rapid diagnostic test, a suitable tool to monitor and predict a patient's clinical course and an efficient way for data sharing among multicenters. We thus developed a novel artificial intelligence system based on deep learning (DL) and federated learning (FL) for the diagnosis, monitoring, and prediction of a patient's clinical course. METHODS: CT imaging derived from 6 different multicenter cohorts were used for stepwise diagnostic algorithm to diagnose COVID-19, with or without clinical data. Patients with more than 3 consecutive CT images were trained for the monitoring algorithm. FL has been applied for decentralized refinement of independently built DL models. RESULTS: A total of 1,552,988 CT slices from 4804 patients were used. The model can diagnose COVID-19 based on CT alone with the AUC being 0.98 (95% CI 0.97-0.99), and outperforms the radiologist's assessment. We have also successfully tested the incorporation of the DL diagnostic model with the FL framework. Its auto-segmentation analyses co-related well with those by radiologists and achieved a high Dice's coefficient of 0.77. It can produce a predictive curve of a patient's clinical course if serial CT assessments are available. INTERPRETATION: The system has high consistency in diagnosing COVID-19 based on CT, with or without clinical data. Alternatively, it can be implemented on a FL platform, which would potentially encourage the data sharing in the future. It also can produce an objective predictive curve of a patient's clinical course for visualization. KEY POINTS: • CoviDet could diagnose COVID-19 based on chest CT with high consistency; this outperformed the radiologist's assessment. Its auto-segmentation analyses co-related well with those by radiologists and could potentially monitor and predict a patient's clinical course if serial CT assessments are available. It can be integrated into the federated learning framework. • CoviDet can be used as an adjunct to aid clinicians with the CT diagnosis of COVID-19 and can potentially be used for disease monitoring; federated learning can potentially open opportunities for global collaboration.

3.
IEEE Trans Med Imaging ; PP2021 Aug 12.
Article in English | MEDLINE | ID: covidwho-1593541

ABSTRACT

Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event and the clinical decision of treatment planning. To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites. This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features. In this paper, we propose a novel domain adaptation (DA) method with two components to address these problems. The first component is a stochastic class-balanced boosting sampling strategy that overcomes the imbalanced learning problem and improves the classification performance on poorly-predicted classes. The second component is a representation learning that guarantees three properties: 1) domain-transferability by prototype triplet loss, 2) discriminant by conditional maximum mean discrepancy loss, and 3) completeness by multi-view reconstruction loss. Particularly, we propose a domain translator and align the heterogeneous data to the estimated class prototypes (i.e., class centers) in a hyper-sphere manifold. Experiments on cross-site severity assessment of COVID-19 from CT images show that the proposed method can effectively tackle the imbalanced learning problem and outperform recent DA approaches.

4.
Brain ; 2021 Dec 16.
Article in English | MEDLINE | ID: covidwho-1594202

ABSTRACT

There is growing evidence that severe acute respiratory syndrome coronavirus 2 can affect the CNS. However, data on white matter and cognitive sequelae at the one-year follow-up are lacking. Therefore, we explored these characteristics in this study. We investigated 22 recovered coronavirus disease 2019 (COVID-19) patients and 21 matched healthy controls. Diffusion tensor imaging, diffusion kurtosis imaging and neurite orientation dispersion and density imaging were performed to identify white matter changes, and the subscales of the Wechsler Intelligence scale were used to assess cognitive function. Correlations between diffusion metrics, cognitive function, and other clinical characteristics were then examined. We also conducted subgroup analysis based on patient admission to the intensive care unit. The corona radiata, corpus callosum and superior longitudinal fasciculus had lower volume fraction of intracellular water in the recovered COVID-19 group than in the healthy control group. Patients who had been admitted to the intensive care unit had lower fractional anisotropy in the body of the corpus callosum than those who had not. Compared with the healthy controls, the recovered COVID-19 patients demonstrated no significant decline in cognitive function. White matter tended to present with fewer abnormalities for shorter hospital stays and longer follow-up times. Lower axonal density was detected in clinically recovered COVID-19 patients after one year. Patients who had been admitted to the intensive care unit had slightly more white matter abnormalities. No significant decline in cognitive function was found in recovered COVID-19 patients. The duration of hospital stay may be a predictor for white matter changes at the one-year follow-up.

5.
Signal Transduct Target Ther ; 6(1): 420, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1585885

ABSTRACT

COVID-19 is identified as a zoonotic disease caused by SARS-CoV-2, which also can cross-transmit to many animals but not mice. Genetic modifications of SARS-CoV-2 or mice enable the mice susceptible to viral infection. Although neither is the natural situation, they are currently utilized to establish mouse infection models. Here we report a direct contact transmission of SARS-CoV-2 variant B.1.351 in wild-type mice. The SARS-CoV-2 (B.1.351) replicated efficiently and induced significant pathological changes in lungs and tracheas, accompanied by elevated proinflammatory cytokines in the lungs and sera. Mechanistically, the receptor-binding domain (RBD) of SARS-CoV-2 (B.1.351) spike protein turned to a high binding affinity to mouse angiotensin-converting enzyme 2 (mACE2), allowing the mice highly susceptible to SARS-CoV-2 (B.1.351) infection. Our work suggests that SARS-CoV-2 (B.1.351) expands the host range and therefore increases its transmission route without adapted mutation. As the wild house mice live with human populations quite closely, this possible transmission route could be potentially risky. In addition, because SARS-CoV-2 (B.1.351) is one of the major epidemic strains and the mACE2 in laboratory-used mice is naturally expressed and regulated, the SARS-CoV-2 (B.1.351)/mice could be a much convenient animal model system to study COVID-19 pathogenesis and evaluate antiviral inhibitors and vaccines.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/transmission , Host-Pathogen Interactions/genetics , Receptors, Virus/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/immunology , COVID-19/virology , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Gene Expression , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Binding , Protein Domains , Receptors, Virus/immunology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Virus Replication
6.
Neural Regen Res ; 17(7): 1576-1581, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1575953

ABSTRACT

Although some short-term follow-up studies have found that individuals recovering from coronavirus disease 2019 (COVID-19) exhibit anxiety, depression, and altered brain microstructure, their long-term physical problems, neuropsychiatric sequelae, and changes in brain function remain unknown. This observational cohort study collected 1-year follow-up data from 22 patients who had been hospitalized with COVID-19 (8 males and 11 females, aged 54.2 ± 8.7 years). Fatigue and myalgia were persistent symptoms at the 1-year follow-up. The resting state functional magnetic resonance imaging revealed that compared with 29 healthy controls (7 males and 18 females, aged 50.5 ± 11.6 years), COVID-19 survivors had greatly increased amplitude of low-frequency fluctuation (ALFF) values in the left precentral gyrus, middle frontal gyrus, inferior frontal gyrus of operculum, inferior frontal gyrus of triangle, insula, hippocampus, parahippocampal gyrus, fusiform gyrus, postcentral gyrus, inferior parietal angular gyrus, supramarginal gyrus, angular gyrus, thalamus, middle temporal gyrus, inferior temporal gyrus, caudate, and putamen. ALFF values in the left caudate of the COVID-19 survivors were positively correlated with their Athens Insomnia Scale scores, and those in the left precentral gyrus were positively correlated with neutrophil count during hospitalization. The long-term follow-up results suggest that the ALFF in brain regions related to mood and sleep regulation were altered in COVID-19 survivors. This can help us understand the neurobiological mechanisms of COVID-19-related neuropsychiatric sequelae. This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University (approval No. 2020S004) on March 19, 2020.

7.
Cell Biosci ; 11(1): 202, 2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1562007

ABSTRACT

BACKGROUND: The ongoing COVID-19 pandemic has resulted in 185 million recorded cases and over 4 million deaths worldwide. Several COVID-19 vaccines have been approved for emergency use in humans and are being used in many countries. However, all the approved vaccines are administered by intramuscular injection and this may not prevent upper airway infection or viral transmission. RESULTS: Here, we describe a novel, intranasally delivered COVID-19 vaccine based on a helper-dependent adenoviral (HD-Ad) vector. The vaccine (HD-Ad_RBD) produces a soluble secreted form of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein and we show it induced robust mucosal and systemic immunity. Moreover, intranasal immunization of K18-hACE2 mice with HD-Ad_RBD using a prime-boost regimen, resulted in complete protection of the upper respiratory tract against SARS-CoV-2 infection. CONCLUSION: Our approaches provide a powerful platform for constructing highly effective vaccines targeting SARS-CoV-2 and its emerging variants.

8.
Preprint in English | EuropePMC | ID: ppcovidwho-295406

ABSTRACT

Backgroud : Both Chlamydia psittaci and COVID-19 virus can cause lung inflammation, which manifests extremely similarly in clinical symptoms and imaging. Especially during the epidemic of COVID-19, psittacosis pneumonia is easily misdiagnosed as COVID-19 pneumonia. The identification of the chest imaging between the two diseases is of special significance when the epidemiological contact history is unclear, and the etiology and nucleic acid test results are not available. This study conducts to compare the imaging characteristics on chest high-resolution CTs (HRCT) between patients with psittaci pneumonia and COVID-19 pneumonia. Methods: : A retrospective analysis of the imaging characteristics on chest HRCTs of 10 psittaci pneumonia patients and 13 COVID-19 pneumonia patients. The similarities and differences in HRCT images of patients with psittaci pneumonia and COVID-19 pneumonia were analyzed. Results: : HRCT showed that among the 10 psittaci pneumonia patients, 8 cases (80.00%) had single lobe involvement, and 2 cases (20.00%) had multiple lobe involvement. Among the 13 COVID-19 pneumonia patients, 2 cases had single lobe involvement (15.38%), and 11 cases had multiple lobe involvement (84.62%). The types of lesions in 10 psittaci pneumonia patients included simple consolidation in 5 cases (50.00%), and ground-glass opacity (GGO) with consolidation in 5 cases (50.00%). The types of lesions in 13 COVID-19 pneumonia patients included simple GGO in 6 cases (46.15%), GGO with consolidation in 4 cases (30.77%), GGO with paving stone sign in 2 cases (15.38%), and simple consolidation in 1 case (7.69%). Lymphadenopathy was observed in 1 psittaci pneumonia patient (10.00%) and 1 COVID-19 pneumonia patient (7.69%). Among the 10 psittaci pneumonia patients, 8 cases (80.00%) had bronchial inflation, and 6 patients (60.00%) had pleural effusion. Among the 13 COVID-19 pneumonia patients, 5 patients (38.46%) showed signs of bronchial inflation, while no pleural effusion was observed in 13 patients. Conclusion: : Chest HRCTs can distinguish COVID-19 pneumonia from psittaci pneumonia, and can provide early diagnoses of these two diseases.

9.
Preprint in English | Other preprints | ID: ppcovidwho-294458

ABSTRACT

Through known association with other proteins, human selenoprotein K (selenok) is currently implicated in the palmitoylation of proteins, degradation of misfolded proteins, innate immune response, and the life cycle of SARS-CoV-2 virus. However, neither the catalytic function of selenok’s selenocysteine (Sec), which, curiously, resides in an intrinsically disordered protein segment nor selenok’s specific role in these pathways are known to date. This report casts these questions in a new light as it describes that selenok is able -both in vitro and in vivo- to cleave some of its own peptide bonds. The cleavages not only release selenok segments that contain its reactive Sec, but as the specific cleavage sites were identified, they proved to cluster tightly near sites through which selenok interacts with protein partners. Furthermore, it is shown that selenok’s cleavage activity is neither restricted to itself nor promiscuous but selectively extends to at least one of its protein partners. Together, selenok’s cleavage ability and its features have all hallmarks of a regulatory mechanism that could play a central role in selenok’s associations with other proteins and its cellular functions overall.

10.
International Journal of Transportation Science and Technology ; 2021.
Article in English | ScienceDirect | ID: covidwho-1549841

ABSTRACT

University students are young, open to new technologies, and their perceptions of the Shared Autonomous Vehicles (SAVs) may indicate their travel behaviors in the future. College towns in small urban or suburban areas offer researchers a unique environment to understand the travel behaviors of future commuters, and test emerging mobility services, such as SAVs. The study performs a survey with the aim of understanding university student perception regarding SAVs. The survey was conducted among the University of Alabama students in Tuscaloosa. The key survey questions include their knowledge and attitudes about AV and shared mobility. The results showed 97% of respondents are aware of AVs, but only 41% know specific automation technologies. As for shared mobility services, 98% of respondents are familiar with Uber and Lyft services. The survey also asked survey participants to indicate their Willingness-To-Pay (WTP) for hypothetical SAV services in three price scenarios. The prices were assumed as relative to the cost of using ride-hailing services with human drivers such as Uber and Lyft. Random parameter ordered logit models were developed to uncover the correlates of the WTP for SAV services. The models identified significant relationships between the WTP and various factors related to respondents’ socio-demographics, awareness of AV companies, and experiences with human-driver ride-hailing services. The awareness of AV companies and ride-hailing services is positively related to the WTP for SAV services. Students who know more AV companies appear to have a greater WTP, and students who are heavy users of Uber or Lyft services are also likely to SAV users in the future. Significant variations were also found in model estimates, indicating that some relationships could vary significantly across observations due to the unobserved heterogeneity. The findings offer insights to decision-makers and investors trying to estimate the market potential of emerging mobility services with AVs.

11.
Preprint in English | EuropePMC | ID: ppcovidwho-293368

ABSTRACT

Backgroud : Both Chlamydia psittaci and COVID-19 virus can cause lung inflammation, which manifests extremely similarly in clinical symptoms and imaging. Especially during the epidemic of COVID-19, psittacosis pneumonia is easily misdiagnosed as COVID-19 pneumonia. The identification of the chest imaging between the two diseases is of special significance when the epidemiological contact history is unclear, and the etiology and nucleic acid test results are not available. This study conducts to compare the imaging characteristics on chest high-resolution CTs (HRCT) between patients with psittaci pneumonia and COVID-19 pneumonia. Methods: : A retrospective analysis of the imaging characteristics on chest HRCTs of 10 psittaci pneumonia patients and 13 COVID-19 pneumonia patients. The similarities and differences in HRCT images of patients with psittaci pneumonia and COVID-19 pneumonia were analyzed. Results: : HRCT showed that among the 10 psittaci pneumonia patients, 8 cases (80.00%) had single lobe involvement, and 2 cases (20.00%) had multiple lobe involvement. Among the 13 COVID-19 pneumonia patients, 2 cases had single lobe involvement (15.38%), and 11 cases had multiple lobe involvement (84.62%). The types of lesions in 10 psittaci pneumonia patients included simple consolidation in 5 cases (50.00%), and ground-glass opacity (GGO) with consolidation in 5 cases (50.00%). The types of lesions in 13 COVID-19 pneumonia patients included simple GGO in 6 cases (46.15%), GGO with consolidation in 4 cases (30.77%), GGO with paving stone sign in 2 cases (15.38%), and simple consolidation in 1 case (7.69%). Lymphadenopathy was observed in 1 psittaci pneumonia patient (10.00%) and 1 COVID-19 pneumonia patient (7.69%). Among the 10 psittaci pneumonia patients, 8 cases (80.00%) had bronchial inflation, and 6 patients (60.00%) had pleural effusion. Among the 13 COVID-19 pneumonia patients, 5 patients (38.46%) showed signs of bronchial inflation, while no pleural effusion was observed in 13 patients. Conclusion: : Chest HRCTs can distinguish COVID-19 pneumonia from psittaci pneumonia, and can provide early diagnoses of these two diseases.

13.
Ren Fail ; 43(1): 1329-1337, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1493366

ABSTRACT

BACKGROUND: This study sought to investigate incidence and risk factors for acute kidney injury (AKI) in hospitalized COVID-19. METHODS: In this retrospective study, we enrolled 823 COVID-19 patients with at least two evaluations of renal function during hospitalization from four hospitals in Wuhan, China between February 2020 and April 2020. Clinical and laboratory parameters at the time of admission and follow-up data were recorded. Systemic renal tubular dysfunction was evaluated via 24-h urine collections in a subgroup of 55 patients. RESULTS: In total, 823 patients were enrolled (50.5% male) with a mean age of 60.9 ± 14.9 years. AKI occurred in 38 (40.9%) ICU cases but only 6 (0.8%) non-ICU cases. Using forward stepwise Cox regression analysis, we found eight independent risk factors for AKI including decreased platelet level, lower albumin level, lower phosphorus level, higher level of lactate dehydrogenase (LDH), procalcitonin, C-reactive protein (CRP), urea, and prothrombin time (PT) on admission. For every 0.1 mmol/L decreases in serum phosphorus level, patients had a 1.34-fold (95% CI 1.14-1.58) increased risk of AKI. Patients with hypophosphatemia were likely to be older and with lower lymphocyte count, lower serum albumin level, lower uric acid, higher LDH, and higher CRP. Furthermore, serum phosphorus level was positively correlated with phosphate tubular maximum per volume of filtrate (TmP/GFR) (Pearson r = 0.66, p < .001) in subgroup analysis, indicating renal phosphate loss via proximal renal tubular dysfunction. CONCLUSION: The AKI incidence was very low in non-ICU patients as compared to ICU patients. Hypophosphatemia is an independent risk factor for AKI in patients hospitalized for COVID-19 infection.


Subject(s)
Acute Kidney Injury/etiology , COVID-19/complications , Hypophosphatemia/complications , Pneumonia, Viral/complications , Acute Kidney Injury/epidemiology , COVID-19/epidemiology , China/epidemiology , Female , Hospitalization , Humans , Hypophosphatemia/epidemiology , Incidence , Intensive Care Units , Kidney Function Tests , Male , Middle Aged , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Retrospective Studies , Risk Factors , SARS-CoV-2
14.
Inf Process Manag ; 59(1): 102796, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1482657

ABSTRACT

In the period of Corona Virus Disease 2019 (COVID-19), millions of people participate in the discussion of COVID-19 on the Internet, which can easily trigger public opinion and threaten social stability. This paper creatively proposes a multi-stage risk grading model of Internet public opinion for public health emergencies. On the basis of general public opinion risk grading analysis, the model continuously pays attention to the risk level of Internet public opinion based on the time scale of regular or major information updates. This model combines Analytic Hierarchy Process Sort II (AHPSort II) and Swing Weighting (SW) methods and proposes a new Multi-Criteria Decision Making (MCDM) method - AHPSort II-SW. Intuitionistic fuzzy number and linguistic fuzzy number are introduced into the model to evaluate the criteria that cannot be quantified. The multi-stage model is tested using more than 2,000 textual data about COVID-19 collected from Microblog, a leading social media platform in China. Seven public opinion risk assessments were conducted from January 23 to April 8, 2020. The empirical results show that in the early COVID-19 outbreak, the risk of public opinion is more serious on macroscopic view. In details, the risk of public opinion decreases slowly with time, but the emergence of important events may still increase the risk of public opinion. The analysis results are in line with the actual situation and verify the effectiveness of the method. Comparative analysis indicates the improved method is proved to be superior and effective, sensitivity analysis confirms its stability. Finally, management suggestions was provided, this study contributes to the literature on public opinion risk assessment and provides implications for practice.

15.
Front Med (Lausanne) ; 8: 663514, 2021.
Article in English | MEDLINE | ID: covidwho-1438417

ABSTRACT

Objective: To assess CT features of COVID-19 patients with different smoking status using quantitative and semi-quantitative technologies and to investigate changes of CT features in different disease states between the two groups. Methods: 30 COVID-19 patients with current smoking status (29 men, 1 woman) admitted in our database were enrolled as smoking group and 56 COVID-19 patients without smoking history (24 men, 32 women) admitted during the same period were enrolled as a control group. Twenty-seven smoking cases and 55 control cases reached recovery standard and were discharged. Initial and follow-up CT during hospitalization and follow-up CT after discharge were acquired. Thirty quantitative features, including the ratio of infection volume and visual-assessed interstitial changes score including total score, score of ground glass opacity, consolidation, septal thickening, reticulation and honeycombing sign, were analyzed. Results: Initial CT images of the smoking group showed higher scores of septal thickening [4.5 (0-5) vs. 0 (0-4), p = 0.001] and reticulation [0 (0-5.25) vs 0 (0-0), p = 0.001] as well as higher total score [7 (5-12.25) vs. 6 (5-7), p = 0.008] with statistical significance than in the control group. The score of reticulation was higher in the smoking group than in the control group when discharged [0.89 (0-0) vs. 0.09 (0-0), p = 0.02]. The score of septal thickening tended to be higher in the smoking group than the control group [4 (0-4) vs. 0 (0-4), p = 0.007] after being discharged. Quantitative CT features including infection ratio of whole lung and left lung as well as infection ratio within HU (-750, -300) and within HU (-300, 49) were higher in the control group of initial CT with statistical differences. The infection ratio of whole lung and left lung, infection ratio within HU (-750), and within HU (-750, -300) were higher in the control group with statistical differences when discharged. This trend turned adverse after discharge and the values of quantitative features were generally higher in the smoking group than in the control group without statistical differences. Conclusions: Patients with a history of smoking presented more severe interstitial manifestations and more residual lesion after being discharged. More support should be given for COVID-19 patients with a smoking history during hospitalization and after discharge.

16.
BMC Infect Dis ; 21(1): 955, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1414111

ABSTRACT

BACKGROUND: Our goal is to further elucidate the clinical condition and prognosis of patients with severe acute COVID-19 with EBV reactivation. METHOD: This is a retrospective single-center study of COVID-19 patients admitted to the intensive care unit of Wuhan No. 3 Hospital (January 31 to March 27, 2020). According to whether Epstein-Barr virus reactivation was detected, the patients were divided into an EBV group and a Non-EBV group. Baseline data were collected including epidemiological, larithmics, clinical and imaging characteristics, and laboratory examination data. RESULTS: Of the 128 patients with COVID-19, 17 (13.3%) were infected with Epstein-Barr virus reactivation. In the symptoms,the rate of tachypnoea in the EBV group was apparently higher than that in the Non-EBV group. In lab tests, the lymphocyte and albumin of EBV group decreased more significantly than Non-EBV group, and the D-dimer and serum calcium of EBV group was higher than Non-EBV group. Regarding the infection index, CRP of EBV group was apparently above the Non-EBV group, and no significant difference was found in procalcitonin of the two groups. The incidence of respiratory failure, ARDS, and hypoproteinaemia of EBV group had more incidence than Non-EBV group. The 28-day and 14-day mortality rates of EBV group was significantly higher than that of Non-EBV group. CONCLUSIONS: In the COVID-19 patients, patients with EBV reactivation had higher 28-day and 14-day mortality rates and received more immuno-supportive treatment than patients of Non-EBV group.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Critical Illness , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/epidemiology , Herpesvirus 4, Human , Humans , Retrospective Studies , SARS-CoV-2 , Virus Activation
17.
JCI Insight ; 5(19)2020 10 02.
Article in English | MEDLINE | ID: covidwho-1388620

ABSTRACT

The emergence of SARS-CoV-2 has created an international health crisis, and small animal models mirroring SARS-CoV-2 human disease are essential for medical countermeasure (MCM) development. Mice are refractory to SARS-CoV-2 infection owing to low-affinity binding to the murine angiotensin-converting enzyme 2 (ACE2) protein. Here, we evaluated the pathogenesis of SARS-CoV-2 in male and female mice expressing the human ACE2 gene under the control of the keratin 18 promoter (K18). In contrast to nontransgenic mice, intranasal exposure of K18-hACE2 animals to 2 different doses of SARS-CoV-2 resulted in acute disease, including weight loss, lung injury, brain infection, and lethality. Vasculitis was the most prominent finding in the lungs of infected mice. Transcriptomic analysis from lungs of infected animals showed increases in transcripts involved in lung injury and inflammatory cytokines. In the low-dose challenge groups, there was a survival advantage in the female mice, with 60% surviving infection, whereas all male mice succumbed to disease. Male mice that succumbed to disease had higher levels of inflammatory transcripts compared with female mice. To our knowledge, this is the first highly lethal murine infection model for SARS-CoV-2 and should be valuable for the study of SARS-CoV-2 pathogenesis and for the assessment of MCMs.


Subject(s)
Cause of Death , Coronavirus Infections/pathology , Disease Progression , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/pathology , Severe Acute Respiratory Syndrome/pathology , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Coronavirus Infections/physiopathology , Disease Models, Animal , Female , Humans , Lung/pathology , Male , Mice , Mice, Transgenic , Pandemics , Pneumonia, Viral/physiopathology , Severe Acute Respiratory Syndrome/physiopathology , Severity of Illness Index , Survival Rate , Virus Replication/genetics
18.
Pediatr Investig ; : e12282, 2021 Aug 12.
Article in English | MEDLINE | ID: covidwho-1353594

ABSTRACT

Importance: The Coronavirus disease 2019 (COVID-19) global pandemic poses a considerable challenge for pediatricians. Objective: This study aimed to identify the epidemiological characteristics and clinical features of pediatric patients with COVID-19 in China. Methods: This multicenter retrospective study included pediatric patients from 46 hospitals in China, covering 12 provinces and two municipalities. Epidemiological, demographic, clinical, laboratory, treatment, and outcome data were analyzed. Results: In total, 211 pediatric patients with COVID-19 were included in this study. The median age was 7.0 years (range: 22 days to 18 years). Approximately 16.3% of the patients exhibited asymptomatic infections, 23.0% had upper respiratory tract infections, and 60.7% had pneumonia, including two with severe pneumonia and one with critical illness. Approximately 78.7% of the pediatric patients occurred in familial clusters. The most three common symptoms or signs at onset in children with COVID-19 were fever (54.5%), cough (49.3%), and pharyngeal congestion (20.8%). Only 17.6% of the patients presented with decreased lymphocyte count, whereas 13.6% had increased lymphocyte count. Among the patients with pneumonia who exhibited abnormal chest computed tomography findings, 18.2% (23/127) of the patients had no other symptoms. Generally, the chest radiographs showed abnormalities that affected both lungs (49.6%); ground-glass opacity (47.2%) was the most common manifestation. The cure and improvement rates were 86.7% (183/211) and 13.3% (28/211), respectively. Only one patient with an underlying condition received invasive mechanical ventilation; none of the patients died. Interpretation: Similar to adults, children of all age groups are susceptible to COVID-19. Fortunately, most pediatric patients have mild symptoms or remain asymptomatic, despite the high incidence of pneumonia. Decreased proportions of white blood cells and lymphocytes are less frequent in children than in adults.

19.
Int J Med Inform ; 154: 104545, 2021 10.
Article in English | MEDLINE | ID: covidwho-1347660

ABSTRACT

BACKGROUND: This study utilized a comprehensive nomogram to evaluate the prognosis of patients with COVID-19 pneumonia. METHODS: COVID-19 pneumonia data was divided into training set (256 of 321, 80%), internal validation set (65 of 321, 20%) and independent external validation set (n = 188). After image processing, lesion segmentation, feature extraction and feature selection, radiomics signatures and clinical indicators were used to develop a radiomics model and a clinical model respectively. Combining radiomics signatures and clinical indicators, a radiomics nomogram was built. The performance of proposed models was evaluated by the receiver operating characteristic curve (AUC). Calibration curves and decision curve analysis were used to assess the performance of the radiomics nomogram. RESULTS: Two clinical indicators that were age and chronic lung disease or asthma and 21 radiomics features were selected to build the radiomics nomogram. The radiomics nomogram yielded an Area Under The Curve1 (AUC) of 0.88 and accuracy of 0.80 in the training set, an AUC of 0.85 and accuracy of 0.77 in internal testing validation set and an AUC of 0.84 and accuracy of 0.75 in independent external validation set. The performance of radiomics nomogram was better than clinical model (AUC = 0.77, p < 0.001) and radiomics model (AUC = 0.72, p = 0.025) in independent external validation set. CONCLUSIONS: The radiomics nomogram may be used to assess the deterioration of COVID-19 pneumonia.


Subject(s)
COVID-19 , Nomograms , Artificial Intelligence , Humans , Prognosis , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...