Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
Computers in Human Behavior ; : 107608, 2022.
Article in English | ScienceDirect | ID: covidwho-2158577

ABSTRACT

Interpersonal skills, including collaborative problem solving (CPS) and negotiation skills, are essential in many aspects of the 21st century. With the rapid development of technologies in the past decades, it has become increasingly prevalent for collaborations, negotiations, and communications to occur virtually. Furthermore, the COVID-19 pandemic accelerated the shift from in-person interactions to virtual interactions. On the other hand, personality traits, enduring characteristics of individuals that are largely stable over time, affect a wide variety of human behaviors, including how people interact with each other. In this study, we investigated the extent to which team members' personalities, the heterogeneity in personalities among team members, and the interaction processes in virtual tasks impacted performance on these tasks with limited exposure to personal information such as appearance and voice. In addition, we examined how one perceived the team partner's personality and how people tended to project their own personality onto partners during the short-term virtual interactions. Findings suggested that higher heterogeneity in personality between partners was associated with better team negotiation performance, while it was not associated with collaboration outcomes in the CPS task. Implications of the findings and limitations of this research were also discussed.

2.
Nat Commun ; 13(1): 7120, 2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2133424

ABSTRACT

With declining SARS-CoV-2-specific antibody titers and increasing numbers of spike mutations, the ongoing emergence of Omicron subvariants causes serious challenges to current vaccination strategies. BA.2 breakthrough infections have occurred in people who have received the wild-type vaccines, including mRNA, inactivated, or recombinant protein vaccines. Here, we evaluate the antibody evasion of recently emerged subvariants BA.4/5 and BA.2.75 in two inactivated vaccine-immunized cohorts with BA.2 breakthrough infections. Compared with the neutralizing antibody titers against BA.2, marked reductions are observed against BA.2.75 in both 2-dose and 3-dose vaccine groups. In addition, although BA.2 breakthrough infections induce a certain cross-neutralization capacity against later Omicron subvariants, the original antigenic sin phenomenon largely limits the improvement of variant-specific antibody response. These findings suggest that BA.2 breakthrough infections seem unable to provide sufficient antibody protection against later subvariants such as BA.2.75 in the current immunization background with wild-type vaccines.


Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2/genetics , Vaccines, Inactivated , Antibodies, Viral
3.
IEEE Transactions on Computational Social Systems ; : 1-11, 2022.
Article in English | Web of Science | ID: covidwho-2123176

ABSTRACT

Multimodal retrieval has received widespread consideration since it can commendably provide massive related data support for the development of computational social systems (CSSs). However, the existing works still face the following challenges: 1) rely on the tedious manual marking process when extended to CSS, which not only introduces subjective errors but also consumes abundant time and labor costs;2) only using strongly aligned data for training, lacks concern for the adjacency information, which makes the poor robustness and semantic heterogeneity gap difficult to be effectively fit;and 3) mapping features into real-valued forms, which leads to the characteristics of high storage and low retrieval efficiency. To address these issues in turn, we have designed a multimodal retrieval framework based on web-knowledge-driven, called unsupervised and robust graph convolutional hashing (URGCH). The specific implementations are as follows: first, a "secondary semantic self-fusion" approach is proposed, which mainly extracts semantic-rich features through pretrained neural networks, constructs the joint semantic matrix through semantic fusion, and eliminates the process of manual marking;second, a "adaptive computing" approach is designed to construct enhanced semantic graph features through the knowledge-infused of neighborhoods and uses graph convolutional networks for knowledge fusion coding, which enables URGCH to sufficiently fit the semantic modality gap while obtaining satisfactory robustness features;Third, combined with hash learning, the multimodality data are mapped into the form of binary code, which reduces storage requirements and improves retrieval efficiency. Eventually, we perform plentiful experiments on the web dataset. The results evidence that URGCH exceeds other baselines about 1%-3.7% in mean average precisions (MAPs), displays superior performance in all the aspects, and can meaningfully provide multimodal data retrieval services to CSS.

4.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2073977

ABSTRACT

Background COVID-19 has caused a global pandemic and the death toll is increasing. With the coronavirus continuously mutating, Omicron has replaced Delta as the most widely reported variant in the world. Studies have shown that the plasma of some vaccinated people does not neutralize the Omicron variant. However, further studies are needed to determine whether plasma neutralizes Omicron after one- or two-dose vaccine in patients who have recovered from infection with the original strain. Methods The pseudovirus neutralization assays were performed on 64 plasma samples of convalescent COVID-19 patients, which were divided into pre-vaccination group, one-dose vaccinated group and two-dose vaccinated group. Results In the three groups, there were significant reductions of sera neutralizing activity from WT to Delta variant (B.1.617.2), and from WT to Omicron variant (B.1.1.529) (ps<0.001), but the difference between Delta and Omicron variants were not significant (p>0.05). The average neutralization of the Omicron variant showed a significant difference between pre-vaccination and two-dose vaccinated convalescent individuals (p<0.01). Conclusions Among the 64 plasma samples of COVID-19 convalescents, whether vaccinated or not, Omicron (B.1.1.529) escaped the neutralizing antibodies, with a significantly decreased neutralization activity compared to WT. And two-dose of vaccine could significantly raise the average neutralization of Omicron in convalescent individuals.

5.
Emerg Microbes Infect ; 11(1): 2680-2688, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2062778

ABSTRACT

The long-term effect of coronavirus disease 2019 (COVID-19) has been rarely known. This study aimed to investigate healthy outcomes of COVID-19 survivors up to 2 years after the infection. A total of 155 COVID-19 patients, who were discharged from Shenzhen Third People's Hospital from February 2020 to April 2020, were enrolled and followed up until March 4, 2022. COVID-19 survivors received questionnaires of long COVID symptoms and psychological symptoms, pulmonary function tests, chest computed tomography (CT) scans and routine laboratory tests. Two years after infection, 36.6% of patients had at least one symptom of long COVID. Vision impairment and fatigue were the most common symptom. 35.0% of participants still had at least one psychological symptom of anxiety, depression, post-traumatic stress symptoms, and sleep difficulties. Radiographic abnormalities were presented in 50.7% of patients, with the most common features of fibrosis-like lesions and residual ground-glass opacity. Diffuse dysfunction (24.0%) was the main abnormalities of pulmonary function tests. Most laboratory parameters returned to normal range, while persistent abnormalities in kidney and liver function test were observed in a subset of participants after discharge. Two years after COVID-19 infection, persistent symptoms of long COVID and psychological symptoms, as well as abnormalities in pulmonary function tests and CT, were still common in a subset of recovering individuals. These findings were limited by the lack of a healthy control group and pre-COVID assessments, which should be confirmed by further large-scale studies.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Prospective Studies , COVID-19 Testing , Lung/diagnostic imaging
6.
Angewandte Chemie ; 134(40), 2022.
Article in English | ProQuest Central | ID: covidwho-2047453

ABSTRACT

Ubiquitin (Ub)‐like protein ISG15 (interferon‐stimulated gene 15) regulates innate immunity and links with the evasion of host response by viruses such as SARS‐CoV‐2. Dissecting ISGylation pathways recently received increasing attention which can inform related disease interventions, but such studies necessitate the preparation and development of various ISG15 protein tools. Here, we find that the leader protease (Lbpro) encoded by foot‐and‐mouth disease virus can promote ligation reactions between recombinant ISG15 and synthetic glycyl compounds, generating protein tools such as ISG15‐propargylamide and ISG15‐rhodamine110, which are needed for cellular proteomic studies of deISGylases, and the screening and evaluation of inhibitors against SARS‐CoV‐2 papain‐like protease (PLpro). Furthermore, this strategy can be also used to load ISG15 onto the lysine of a synthetic peptide through an isopeptide bond, and prepare Ub and NEDD8 (ubiquitin‐like protein Nedd8) protein tools.

7.
Genes Dis ; 2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2007709

ABSTRACT

Vaccination by inactivated vaccine is an effective strategy to prevent the COVID-19 pandemic. However, the detailed molecular immune response at single-cell level is poorly understood. In this study, we systematically delineated the landscape of the pre- and post-vaccination single-cell transcriptome, TCR (T cell antigen receptor) and BCR (B cell antigen receptor) expression profile of vaccinated candidates. The bulk TCR sequencing analysis of COVID-19 patients was also performed. Enrichment of a clonal CD8+ T cell cluster expressing specific TCR was identified in both vaccination candidates and COVID-19 patients. These clonal CD8+ T cells showed high expression of cytotoxicity, phagosome and antigen presentation related genes. The cell-cell interaction analysis revealed that monocytes and dendritic cells could interact with these cells and initiate phagocytosis via ICAM1-ITGAM and ITGB2 signaling. Together, our study systematically deciphered the detailed immunological response during SARS-CoV-2 vaccination and infection. It may facilitate understanding the immune response and the T-cell therapy against COVID-19.

8.
Nurs Open ; 2022 Aug 14.
Article in English | MEDLINE | ID: covidwho-1990523

ABSTRACT

AIM: The aim of this study was to explore the mediating role of perceived social support in the association between perceived stress and job burnout in midwives. DESIGN: A descriptive, cross-sectional online survey. METHODS: Using the stratified cluster sampling method, 329 midwives in 20 hospitals in China were selected as the participants. They completed self-report assessment measures of job burnout, perceived stress and perceived social support. RESULTS: 63.5% of the participants had job burnout. Perceived stress was negatively associated with social support (r = -.350, p < .01), while it was positively associated with job burnout (r = -.382, p < .01). Social support was negatively correlated with job burnout (r = -.569, p < .01). The total effect of perceived stress on job burnout was 0.474 (95% CI: 0.367 ~ 0.596, p < .01), the direct effect was 0.242 (95% CI: 0.142 ~ 0.355, p < .01), and the indirect effect was 0.232 (95% CI: 0.160 ~ 0.316, p < .01). Social support programmes for midwives should be implemented to control the impact of perceived stress on job burnout.

9.
Angew Chem Int Ed Engl ; 61(40): e202206205, 2022 10 04.
Article in English | MEDLINE | ID: covidwho-1990419

ABSTRACT

Ubiquitin (Ub)-like protein ISG15 (interferon-stimulated gene 15) regulates innate immunity and links with the evasion of host response by viruses such as SARS-CoV-2. Dissecting ISGylation pathways recently received increasing attention which can inform related disease interventions, but such studies necessitate the preparation and development of various ISG15 protein tools. Here, we find that the leader protease (Lbpro ) encoded by foot-and-mouth disease virus can promote ligation reactions between recombinant ISG15 and synthetic glycyl compounds, generating protein tools such as ISG15-propargylamide and ISG15-rhodamine110, which are needed for cellular proteomic studies of deISGylases, and the screening and evaluation of inhibitors against SARS-CoV-2 papain-like protease (PLpro). Furthermore, this strategy can be also used to load ISG15 onto the lysine of a synthetic peptide through an isopeptide bond, and prepare Ub and NEDD8 (ubiquitin-like protein Nedd8) protein tools.


Subject(s)
COVID-19 , Peptide Hydrolases , Animals , Catalysis , Cytokines/metabolism , Interferons , Lysine , NEDD8 Protein , Peptide Hydrolases/metabolism , Proteomics , SARS-CoV-2 , Ubiquitins/chemistry
10.
Ann Intensive Care ; 12(1): 64, 2022 Jul 10.
Article in English | MEDLINE | ID: covidwho-1928203

ABSTRACT

BACKGROUND: The long-term clinical status of coronavirus disease 2019 (COVID-19) in recovered patients remains largely unknown. This prospective cohort study evaluated clinical status of COVID-19 and explored the associated risk factors. METHODS: At the outpatient visit, patients underwent routine blood tests, physical examinations, pulmonary function tests, 6-min walk test, high-resolution computed tomography (CT) of the chest, and extrapulmonary organ function tests. RESULTS: 230 patients were analyzed. Half (52.7%) reported at least one symptom, most commonly fatigue (20.3%) and sleep difficulties (15.8%). Anxiety (8.2%), depression (11.3%), post-traumatic symptoms (10.3%), and sleep disorders (26.3%) were also reported. Diffusion impairments were found in 35.4% of the patients. Abnormal chest CT scans were present in 63.5% of the patients, mainly reticulation and ground-glass opacities. Further, a persistent decline in kidney function was observed after discharge. SARS-CoV-2-specific antibodies of IgA, IgG, and IgM were positive in 56.4%, 96.3%, and 15.2% of patients, respectively. Multivariable logistic regression showed that disease severity, age, and sex were closely related to patient recovery. CONCLUSIONS: One year after hospital discharge, patients recovered from COVID-19 continued to experience both pulmonary and extrapulmonary dysfunction. While paying attention to pulmonary manifestations of COVID-19, follow-up studies on extrapulmonary manifestations should be strengthened.

11.
Cells ; 11(11)2022 05 25.
Article in English | MEDLINE | ID: covidwho-1924204

ABSTRACT

Herein, we have verified the interaction between the functional peptides from the SARS-CoV-2 and cell membrane, and we further proved that peptides exhibit little membrane disruption. The specific amino acids (Lys, Ile, Glu, Asn, Gln, etc.) with charge or hydrophobic residues play a significant role during the functional-peptide binding to membrane. The findings could provide the hints related to viral infection and also might pave the way for development of new materials based on peptides with membrane-binding activity, which would enable functional peptides further as peptide adjuvants, in order to help deliver the cancer drug into tumor cells for the efficient tumor therapy.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Amino Acid Sequence , Cell Membrane/metabolism , Humans , Peptides/metabolism , SARS-CoV-2 , Trypsin/metabolism
12.
Mol Biomed ; 3(1): 20, 2022 Jul 05.
Article in English | MEDLINE | ID: covidwho-1923614

ABSTRACT

Although the SARS-CoV-2 vaccine has been widely used worldwide, not all individuals can produce neutralization antibodies, so it is still urgent to find and prepare neutralization antibodies for COVID-19 prevention or treatment. In this study, we created a new strategy to effectively obtain neutralizing antibodies or complementary determining region 3 (CDR3) of neutralizing antibodies against SARS-CoV-2. We first predicted and synthesized several B cell epitopes on RBD and adjacent RBD of S protein, then the B cell epitopes were used to prepare affinity chromatography columns respectively and purify the binding IgG from serum samples of convalescent COVID-19 patients. After these IgGs were identified to have neutralizing activity, the peptide sequences of the antigen-binding regions (variable region) of neutralizing antibodies were analyzed by protein mass spectrometry. Subsequently, the B cells from the same individual were sorted and used to obtain their full BCR repertoire by 5' RACE combined with high-throughput of PacBio sequencing method. Then, the peptide sequence of neutralizing antibody variable region by protein mass spectrometry was mapped to the full BCR repertoire and found the full variable region sequence of neutralizing antibodies. Finally, we obtained and synthesized numerous CDR3 peptides of neutralizing antibodies to confirm the neutralizing activity for SARS-CoV-2 infection. Our results indicate that the novel scheme will be suitable for rapid screening of neutralizing antibodies, including screening neutralizing antibodies against SARS-CoV-2 and other pathogenic microorganisms.

13.
Nat Med ; 26(6): 842-844, 2020 06.
Article in English | MEDLINE | ID: covidwho-1900503

ABSTRACT

Respiratory immune characteristics associated with Coronavirus Disease 2019 (COVID-19) severity are currently unclear. We characterized bronchoalveolar lavage fluid immune cells from patients with varying severity of COVID-19 and from healthy people by using single-cell RNA sequencing. Proinflammatory monocyte-derived macrophages were abundant in the bronchoalveolar lavage fluid from patients with severe COVID-9. Moderate cases were characterized by the presence of highly clonally expanded CD8+ T cells. This atlas of the bronchoalveolar immune microenvironment suggests potential mechanisms underlying pathogenesis and recovery in COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Single-Cell Analysis , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2
14.
ACS Appl Mater Interfaces ; 14(25): 28527-28536, 2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1900420

ABSTRACT

Rapid antigen detection tests are urgently needed for the early diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The discovery of a binder with high affinity and selectivity for the biomarkers presented by SARS-CoV-2 is crucial to the development of the rapid antigen detection method. We utilized the surface biopanning to identify a peptide binder R1 from a phage-displayed peptide library consisting of 109 independent phage recombinants. The R1 peptide exhibited high-affinity for specific binding with the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein with a dissociation constant KD of (7.5 ± 1.9) × 10-10 M, which maintained high binding affinity with the RBD derived from Gamma, Lambda, Delta, and Omicron variants. The composition and sequence dependence of binding characteristics in R1-RBD interactions was revealed by the binding affinity fluctuations between RBD and the scrambled sequences or single-site mutants of R1. The R1-functionalized gold nanoparticles possessed concentration-dependent response to RBD and selectivity over bovine serum albumin and human serum albumin. The peptide binder R1 shows the potential to be used for constructing a rapid detection method for the early-stage diagnostics for SARS-CoV-2.


Subject(s)
COVID-19 , Metal Nanoparticles , Antibodies, Viral , Binding Sites , COVID-19/diagnosis , Gold , Humans , Peptide Library , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
15.
Virol J ; 19(1): 96, 2022 05 28.
Article in English | MEDLINE | ID: covidwho-1869089

ABSTRACT

The SARS-CoV-2 nucleocapsid protein (NP) is an important indicator for the virus infection, highlighting the crucial role of NP-specific monoclonal antibodies (mAbs) used in multiple biochemical assays and clinical diagnosis for detecting the NP antigen. Here, we reported a pair of noncompeting human NP-specific mAbs, named P301-F7 and P301-H5, targeting two distinct linear epitopes on SARS-CoV-2 or SARS-CoV. We evaluated the application of P301-F7 in the analysis of enzyme linked immunosorbent assay, western blot, flow cytometry, immunofluorescence, and focus reduction neutralization test. We for the first time report a broad mAb effectively recognizing various live viruses of SARS-CoV-2 variants including Alpha, Beta, Delta, and Omicron, indicating a wide range of application prospects.


Subject(s)
COVID-19 , Nucleocapsid Proteins , Animals , Antibodies, Monoclonal , COVID-19/diagnosis , Humans , Mice , Mice, Inbred BALB C , Nucleocapsid Proteins/genetics , SARS-CoV-2/genetics
16.
Water Res ; 220: 118686, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1867893

ABSTRACT

To effectively control the ongoing outbreaks of fast-spreading SARS-CoV-2 variants, there is an urgent need to add rapid variant detection and discrimination methods to the existing sewage surveillance systems established worldwide. We designed eight assays based on allele-specific RT-qPCR for real-time allelic discrimination of eight SARS-CoV-2 variants (Alpha, Beta, Gamma, Delta, Omicron, Lambda, Mu, and Kappa) in sewage. In silico analysis of the designed assays for identifying SARS-CoV-2 variants using more than four million SARS-CoV-2 variant sequences yielded ∼100% specificity and >90% sensitivity. All assays could sensitively discriminate and quantify target variants at levels as low as 10 viral RNA copy/µL with minimal cross-reactivity to the corresponding nontarget genotypes, even for sewage samples containing mixtures of SARS-CoV-2 variants with differential abundances. Integration of this method into the routine sewage surveillance in Hong Kong successfully identified the Beta variant in a community sewage. Complete concordance was observed between the results of viral whole-genome sequencing and those of our novel assays in sewage samples that contained exclusively the Delta variant discharged by a clinically diagnosed COVID-19 patient living in a quarantine hotel. Our assays in this method also provided real-time discrimination of the newly emerging Omicron variant in sewage two days prior to clinical test results in another quarantine hotel in Hong Kong. These novel allelic discrimination assays offer a rapid, sensitive, and specific way for detecting multiple SARS-CoV-2 variants in sewage and can be directly integrated into the existing sewage surveillance systems.


Subject(s)
COVID-19 , SARS-CoV-2 , Alleles , Humans , SARS-CoV-2/genetics , Sewage
17.
Cells ; 11(11):1738, 2022.
Article in English | MDPI | ID: covidwho-1857245

ABSTRACT

Herein, we have verified the interaction between the functional peptides from the SARS-CoV-2 and cell membrane, and we further proved that peptides exhibit little membrane disruption. The specific amino acids (Lys, Ile, Glu, Asn, Gln, etc.) with charge or hydrophobic residues play a significant role during the functional-peptide binding to membrane. The findings could provide the hints related to viral infection and also might pave the way for development of new materials based on peptides with membrane-binding activity, which would enable functional peptides further as peptide adjuvants, in order to help deliver the cancer drug into tumor cells for the efficient tumor therapy.

18.
Atmospheric Chemistry and Physics ; 22(9):6291-6308, 2022.
Article in English | ProQuest Central | ID: covidwho-1842977

ABSTRACT

The Chinese government recently proposed ammonia (NH3) emission reductions (but without a specific national target) as a strategic option to mitigate fine particulate matter (PM2.5) pollution. We combined a meta-analysis of nationwide measurements and air quality modeling to identify efficiency gains by striking a balance between controlling NH3 and acid gas (SO2 and NOx) emissions. We found that PM2.5 concentrations decreased from 2000 to 2019, but annual mean PM2.5 concentrations still exceeded 35 µg m-3 at 74 % of 1498 monitoring sites during 2015–2019. The concentration of PM2.5 and its components were significantly higher (16 %–195 %) on hazy days than on non-hazy days. Compared with mean values of other components, this difference was more significant for the secondary inorganic ions SO42-, NO3-, and NH4+ (average increase 98 %). While sulfate concentrations significantly decreased over this period, no significant change was observed for nitrate and ammonium concentrations. Model simulations indicate that the effectiveness of a 50 % NH3 emission reduction for controlling secondary inorganic aerosol (SIA) concentrations decreased from 2010 to 2017 in four megacity clusters of eastern China, simulated for the month of January under fixed meteorological conditions (2010). Although the effectiveness further declined in 2020 for simulations including the natural experiment of substantial reductions in acid gas emissions during the COVID-19 pandemic, the resulting reductions in SIA concentrations were on average 20.8 % lower than those in 2017. In addition, the reduction in SIA concentrations in 2017 was greater for 50 % acid gas reductions than for the 50 % NH3 emission reductions. Our findings indicate that persistent secondary inorganic aerosol pollution in China is limited by emissions of acid gases, while an additional control of NH3 emissions would become more important as reductions of SO2 and NOx emissions progress.

19.
J Asthma ; : 1-9, 2022 May 09.
Article in English | MEDLINE | ID: covidwho-1830466

ABSTRACT

OBJECTIVE: Regular physical activity is essential for asthma control in children, but it remains understudied within the context of COVID-19. Physical activity and sedentary time levels before and during the COVID-19 pandemic among children with asthma were documented and differences by characteristics were explored. METHODS: This was a cross-sectional self-administered online survey study of 5- to 17-year-old children with asthma from the United States between December 2020 and April 2021. RESULTS: This study included 68 children with asthma. Although only 4.6% of the children were fully inactive before the pandemic, this number increased to 24.6% during the survey period (p < 0.001). Children spent significantly less time outdoors and more time in front of screens during the pandemic versus before (p < 0.001). The variety of activities in which children with asthma engaged in during the pandemic was lower than what they used to do prior to the COVID-19 crisis. Boys, Hispanic children, those of low-income households, and those not attending school in-person were significantly associated with less participation in physical activity during the pandemic. Ethnicity remained significantly associated after adjusting for multiple comparisons. CONCLUSIONS: During the COVID-19 pandemic, children with asthma were less active and spent more time in front of screens and less time outdoors. Subgroup analyses revealed individual, parental, and organizational characteristics being associated with differential participation in physical activity, highlighting disparities in opportunities for children with asthma of different circumstances to remain active and healthy during the pandemic. Additional, more robust longitudinal studies are needed to confirm these results.

20.
J Anal Test ; 6(1): 44-52, 2022.
Article in English | MEDLINE | ID: covidwho-1827581

ABSTRACT

The COVID-19 pandemic has brought great challenges to traditional nucleic acid detection technology. Thus, it is urgent to develop a more simple and efficient nucleic acid detection technology. CRISPR-Cas12 has signal amplification ability, high sensitivity and high nucleic acid recognition specificity, so it is considered as a nucleic acid detection tool with broad development prospects and high application value. This review paper discusses recent advances in CRISPR-Cas12-based nucleic acid detection, with an emphasis on the new research methods and means to improve the nucleic acid detection capability of CRISPR-Cas12. Strategies for improving sensitivity, optimization of integrated detection, development of simplified detection mode and improvement of quantitative detection capabilities are included. Finally, the future development of CRISPR-Cas12-based nucleic acids detection is prospected.

SELECTION OF CITATIONS
SEARCH DETAIL