Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add filters

Year range
1.
BMJ ; 373: n1038, 2021 May 11.
Article in English | MEDLINE | ID: covidwho-1223582

ABSTRACT

OBJECTIVE: To investigate the use of repurposed and adjuvant drugs in patients admitted to hospital with covid-19 across three continents. DESIGN: Multinational network cohort study. SETTING: Hospital electronic health records from the United States, Spain, and China, and nationwide claims data from South Korea. PARTICIPANTS: 303 264 patients admitted to hospital with covid-19 from January 2020 to December 2020. MAIN OUTCOME MEASURES: Prescriptions or dispensations of any drug on or 30 days after the date of hospital admission for covid-19. RESULTS: Of the 303 264 patients included, 290 131 were from the US, 7599 from South Korea, 5230 from Spain, and 304 from China. 3455 drugs were identified. Common repurposed drugs were hydroxychloroquine (used in from <5 (<2%) patients in China to 2165 (85.1%) in Spain), azithromycin (from 15 (4.9%) in China to 1473 (57.9%) in Spain), combined lopinavir and ritonavir (from 156 (<2%) in the VA-OMOP US to 2,652 (34.9%) in South Korea and 1285 (50.5%) in Spain), and umifenovir (0% in the US, South Korea, and Spain and 238 (78.3%) in China). Use of adjunctive drugs varied greatly, with the five most used treatments being enoxaparin, fluoroquinolones, ceftriaxone, vitamin D, and corticosteroids. Hydroxychloroquine use increased rapidly from March to April 2020 but declined steeply in May to June and remained low for the rest of the year. The use of dexamethasone and corticosteroids increased steadily during 2020. CONCLUSIONS: Multiple drugs were used in the first few months of the covid-19 pandemic, with substantial geographical and temporal variation. Hydroxychloroquine, azithromycin, lopinavir-ritonavir, and umifenovir (in China only) were the most prescribed repurposed drugs. Antithrombotics, antibiotics, H2 receptor antagonists, and corticosteroids were often used as adjunctive treatments. Research is needed on the comparative risk and benefit of these treatments in the management of covid-19.

2.
Psychol Health Med ; : 1-6, 2021 May 11.
Article in English | MEDLINE | ID: covidwho-1223229

ABSTRACT

This study aimed to explore which age group out of the patients in quarantine wards with novel coronavirus pneumonia is the most susceptible to anxiety. The data of 32 Covid-19 patients isolated in the quarantine wards of the second Infectious Diseases Department of Baoding Hospital and 71 Covid-19 patients in Tangshan City Infectious Disease Hospital from January 24th to March 5th, 2020, a total of 103 patients, were analyzed. Among these patients, 97 isolated patients were scored with a self-rating anxiety scale (SAS) score seven days after quarantine, and the correlation between age and score was analyzed. These 97 isolated patients were then divided into three groups according to age: group A (up to 35 years old), group B (36-60 years), and group C (over 60 years). One-way analysis of variance was used to compare the scores among groups. The Q-test was used for pairwise comparison.P < 0.05 was considered statistically significant.There was a negative correlation between age and SAS score in isolated Covid-19 patients, and the differences in the score among groups were statistically significant. Patients under 35 years old were more prone to anxiety when they were isolated for seven days. Isolated patients aged up to 35 years old need more attention from quarantine medical staff, communication should be strengthened, and psychological intervention from psychotherapists should be given if necessary.

3.
J Biomed Sci ; 28(1): 34, 2021 Apr 30.
Article in English | MEDLINE | ID: covidwho-1216897

ABSTRACT

BACKGROUND: The spread of SARS-CoV-2, the virus that causes Coronavirus Disease 2019 (COVID-19), has been characterized as a worldwide pandemic. Currently, there are few preclinical animal models that suitably represent infection, as the main point of entry to human cells is via human angiotensin-converting enzyme 2 (ACE2) which is not present in typical preclinical mouse strains. Additionally, SARS-CoV-2 is highly virulent and unsafe for use in many research facilities. Here we describe the development of a preclinical animal model using intranasal administration of ACE2 followed by non-infectious SARS-CoV-2 pseudovirus (PsV) challenge. METHODS: To specifically generate our SARS-CoV-2 PsV, we used a lentivirus system. Following co-transfection with a packaging plasmid containing HIV Gag and Pol, luciferase-expressing lentiviruses, and a plasmid carrying the SARS-CoV-2 spike protein, SARS-CoV-2 PsVs can be isolated and purified. To better understand and maximize the infectivity of SARS-CoV-2 PsV, we generated PsV carrying spike protein variants known to have varying human ACE2 binding properties, including 19 deletion (19del) and 19del + D614G. RESULTS: Our system demonstrated the ability of PsVs to infect the respiratory passage of mice following intranasal hACE2 transduction. Additionally, we demonstrate in vitro and in vivo manipulability of our system using recombinant receptor-binding domain protein to prevent PsV infection. CONCLUSIONS: Our PsV system is able to model SARS-CoV-2 infections in a preclinical mouse model and can be used to test interventions or preventative treatments. We believe that this method can be extended to work in various mouse strains or to model infection with different coronaviruses. A simple in vivo system such as our model is crucial for rapidly and effectively responding to the current COVID-19 pandemic in addition to preparing for future potential coronavirus outbreaks.


Subject(s)
/administration & dosage , Disease Models, Animal , Spike Glycoprotein, Coronavirus/physiology , Administration, Intranasal , Animals , /transmission , Female , Humans , Lentivirus/physiology , Mice , Mice, Inbred BALB C
4.
Humanities & Social Sciences Communications ; 8(1), 2021.
Article | WHO COVID | ID: covidwho-1216487

ABSTRACT

Since the start of the COVID-19 pandemic, pertinent conspiracy theories have proliferated online, raising the question: How might believing in those conspiracy theories be linked with engagement in disease-preventive behaviours? To answer this, we conducted a repeated cross-sectional survey of around 1500 respondents to examine the link between conspiracy-theory beliefs and disease-preventive behaviours across six time-points in the United States from early February to late March 2020 The findings reveal that believing in risk-acceptance conspiracy theories (RA-CTs;e g , “COVID-19 is a man-made bioweapon”) was linked to more preventive behaviours However, believing in risk-rejection conspiracy theories (RR-CTs;e g , “COVID-19 is like influenza and was purposefully exaggerated”) was associated with fewer preventive behaviours These differential links were mediated by risk perception and negative emotions and modulated by the stage of the outbreak—RA-CTs predicted higher risk perception in the mild stage, whereas RR-CTs predicted lower risk perception in the severe stage

5.
Political Psychology ; : 1, 2021.
Article | WHO COVID | ID: covidwho-1203898

ABSTRACT

Fighting the COVID‐19 pandemic requires large numbers of citizens to adopt disease‐preventive practices We contend that national identification can mobilize and motivate people to engage in preventive behaviors to protect the collective, which in return would heighten national identification further To test these reciprocal links, we conducted studies in two countries with diverse national tactics toward curbing the pandemic: (1) a two‐wave longitudinal survey in China (Study 1, N = 1200), where a national goal to fight COVID‐19 was clearly set, and (2) a five‐wave longitudinal survey in the United States (Study 2, N = 1001), where the national leader, President Trump, rejected the severity of COVID‐19 in its early stage Results revealed that national identification was associated with an increase in disease‐preventive behaviors in both countries in general However, higher national identification was associated with greater trust in Trump's administration among politically conservative American participants, which then was associated with slower adoption of preventive behaviors The reciprocal effect of disease‐preventive behaviors on national identification was observed only in China Overall, our findings suggest that although national identification may serve as a protective factor in curbing the pandemic, this beneficial effect was reduced in some political contexts Highlights Policymakers should note that national identity serves as a protective factor in curbing the COVID‐19 pandemic Narratives that highlight the collective agency of people would be useful in promoting disease‐preventive actions as long as they are also endorsed by national leaders National leaders should provide clear and consistent recommendations in promoting disease‐preventive actions Practitioners and policymakers should be aware of how the communication strategies they use would be affected by society’s political contexts Mobilizing disease‐preventive actions through a patriotic frame might not be useful when national leaders did not unambiguously promote disease prevention Policymakers should note that national identity serves as a protective factor in curbing the COVID‐19 pandemic Narratives that highlight the collective agency of people would be useful in promoting disease‐preventive actions as long as they are also endorsed by national leaders National leaders should provide clear and consistent recommendations in promoting disease‐preventive actions Practitioners and policymakers should be aware of how the communication strategies they use would be affected by society’s political contexts Mobilizing disease‐preventive actions through a patriotic frame might not be useful when national leaders did not unambiguously promote disease prevention [ABSTRACT FROM AUTHOR] Copyright of Political Psychology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission However, users may print, download, or email articles for individual use This abstract may be abridged No warranty is given about the accuracy of the copy Users should refer to the original published version of the material for the full abstract (Copyright applies to all Abstracts )

6.
Emerg Microbes Infect ; 10(1): 874-884, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1199439

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic is unlikely to abate until sufficient herd immunity is built up by either natural infection or vaccination. We previously identified ten linear immunodominant sites on the SARS-CoV-2 spike protein of which four are located within the RBD. Therefore, we designed two linkerimmunodominant site (LIS) vaccine candidates which are composed of four immunodominant sites within the RBD (RBD-ID) or all the 10 immunodominant sites within the whole spike (S-ID). They were administered by subcutaneous injection and were tested for immunogenicity and in vivo protective efficacy in a hamster model for COVID-19. We showed that the S-ID vaccine induced significantly better neutralizing antibody response than RBD-ID and alum control. As expected, hamsters vaccinated by S-ID had significantly less body weight loss, lung viral load, and histopathological changes of pneumonia. The S-ID has the potential to be an effective vaccine for protection against COVID-19.

7.
ISPRS International Journal of Geo-Information ; 10(3):145, 2021.
Article | WHO COVID | ID: covidwho-1143512

ABSTRACT

The COVID-19 pandemic is a major problem facing humanity throughout the world The rapid and accurate tracking of population flows may therefore be epidemiologically informative This paper adopts a massive amount of daily population flow data (from January 10 to March 15, 2020) for China obtained from the Baidu Migration platform to analyze the changes of the spatiotemporal patterns and network characteristics in population flow during the pre-outbreak period, outbreak period, and post-peak period The results show that (1) for temporal characteristics of population flow, the total population flow varies greatly between the three periods, with an overall trend of the pre-outbreak period flow > the post-peak period flow > the outbreak period flow Impacted by the lockdown measures, the population flow in various provinces plunged drastically and remained low until the post-peak period, at which time it gradually increased (2) For the spatial pattern, the pattern of population flow is divided by the geographic demarcation line known as the Hu (Heihe-Tengchong) Line, with a high-density interconnected network in the southeast half and a low-density serial-connection network in the northwest half During the outbreak period, Wuhan city appeared as a hollow region in the population flow network;during the post-peak period, the population flow increased gradually, but it was mainly focused on intra-provincial flow (3) For the network characteristic changes, during the outbreak period, the gap in the network status between cities at different administrative levels narrowed significantly Thus, the feasibility of Baidu migration data, comparison with non-epidemic periods, and optimal implications are discussed This paper mainly described the difference and specific information under non-normal situation compared with existing results under a normal situation, and analyzed the impact mechanism, which can provide a reference for local governments to make policy recommendations for economic recovery in the future under the epidemic period

8.
Front Immunol ; 12: 625881, 2021.
Article in English | MEDLINE | ID: covidwho-1133910

ABSTRACT

T cells play a critical role in coronavirus diseases. How they do so in COVID-19 may be revealed by analyzing the epigenetic chromatin accessibility of cis- and trans-regulatory elements and creating transcriptomic immune profiles. We performed single-cell assay for transposase-accessible chromatin (scATAC) and single-cell RNA (scRNA) sequencing (seq) on the peripheral blood mononuclear cells (PBMCs) of severely ill/critical patients (SCPs) infected with COVID-19, moderate patients (MPs), and healthy volunteer controls (HCs). About 76,570 and 107,862 single cells were used, respectively, for analyzing the characteristics of chromatin accessibility and transcriptomic immune profiles by the application of scATAC-seq (nine cases) and scRNA-seq (15 cases). The scATAC-seq detected 28,535 different peaks in the three groups; among these peaks, 41.6 and 10.7% were located in the promoter and enhancer regions, respectively. Compared to HCs, among the peak-located genes in the total T cells and its subsets, CD4+ T and CD8+ T cells, from SCPs and MPs were enriched with inflammatory pathways, such as mitogen-activated protein kinase (MAPK) signaling pathway and tumor necrosis factor (TNF) signaling pathway. The motifs of TBX21 were less accessible in the CD4+ T cells of SCPs compared with those in MPs. Furthermore, the scRNA-seq showed that the proportion of T cells, especially the CD4+ T cells, was decreased in SCPs and MPs compared with those in HCs. Transcriptomic results revealed that histone-related genes, and inflammatory genes, such as NFKBIA, S100A9, and PIK3R1, were highly expressed in the total T cells, CD4+ T and CD8+ T cells, both in the cases of SCPs and MPs. In the CD4+ T cells, decreased T helper-1 (Th1) cells were observed in SCPs and MPs. In the CD8+T cells, activation markers, such as CD69 and HLA class II genes (HLA-DRA, HLA-DRB1, and HLA-DRB5), were significantly upregulated in SCPs. An integrated analysis of the data from scATAC-seq and scRNA-seq showed some consistency between the approaches. Cumulatively, we have generated a landscape of chromatin epigenetic status and transcriptomic immune profiles of T cells in patients with COVID-19. This has provided a deeper dissection of the characteristics of the T cells involved at a higher resolution than from previously obtained data merely by the scRNA-seq analysis. Our data led us to suggest that the T-cell inflammatory states accompanied with defective functions in the CD4+ T cells of SCPs may be the key factors for determining the pathogenesis of and recovery from COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , CD8-Positive T-Lymphocytes/physiology , Chromatin/metabolism , /physiology , /genetics , Calgranulin B/genetics , Chromatin/genetics , Class Ia Phosphatidylinositol 3-Kinase/genetics , Epigenome/immunology , Gene Expression Profiling , Humans , Immunity, Cellular/genetics , Inflammation/genetics , Lymphocyte Activation , NF-KappaB Inhibitor alpha/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Transposases/metabolism , Up-Regulation
9.
Building and Environment ; : 107788, 2021.
Article | WHO COVID | ID: covidwho-1128907

ABSTRACT

Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case Computer simulations were performed to simulate the spread of fine exhaled droplets We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer The ventilation rate was measured using the tracer gas concentration decay method This outbreak involved ten infected persons in three families (A, B, C) All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020 None of the restaurant staff or the 68 patrons at the other 15 tables became infected During this occasion, the measured ventilation rate was 0 9 L/s per person No close contact or fomite contact was identified, aside from back-to-back sitting in some cases Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person

10.
Medicine (Baltimore) ; 100(8): e24901, 2021 Feb 26.
Article in English | MEDLINE | ID: covidwho-1119150

ABSTRACT

ABSTRACT: Coronavirus disease 2019 (COVID-19) has been a rampant worldwide health threat and we aimed to develop a model for early prediction of disease progression.This retrospective study included 124 adult inpatients with COVID-19 who presented with severe illness at admission and had a definite outcome (recovered or progressed to critical illness) during February 2020. Eighty-four patients were used as training cohort and 40 patients as validation cohort. Logistic regression analysis and receiver operating characteristic curve (ROC) analysis were used to develop and evaluate the prognostic prediction model.In the training cohort, the mean age was 63.4 ±â€Š1.5 years, and male patients (48, 57%) were predominant. Forty-three (52%) recovered, and 41 (49%) progressed to critical. Decreased lymphocyte count (LC, odds ratio [OR] = 4.40, P = .026), elevated lactate dehydrogenase levels (LDH, OR = 4.24, P = .030), and high-sensitivity C-reactive protein (hsCRP, OR = 1.01, P = .025) at admission were independently associated with higher odds of deteriorated outcome. Accordingly, we developed a predictive model for disease progression based on the levels of the 3 risk factors (LC, LDH, and hsCRP) with a satisfactory performance in ROC analysis (area under the ROC curve [AUC] = 0.88, P < .001) and the best cut-off value was 0.526 with the sensitivity and specificity of 75.0% and 90.7%, respectively. Then, the model was internally validated by leave-one-out cross-validation with value of AUC 0.85 (P < .001) and externally validated in another validation cohort (26 recovered patients and 14 progressed patients) with AUC 0.84 (P < .001).We identified 3 clinical indicators of risk of progression and developed a severe COVID-19 prognostic prediction model, allowing early identification and intervention of high-risk patients being critically illness.


Subject(s)
/physiopathology , Aged , C-Reactive Protein/analysis , Disease Progression , Female , Humans , L-Lactate Dehydrogenase/blood , Lymphocyte Count , Male , Middle Aged , Prognosis , ROC Curve , Retrospective Studies , Sensitivity and Specificity , Severity of Illness Index
11.
Antimicrob Resist Infect Control ; 10(1): 42, 2021 02 25.
Article in English | MEDLINE | ID: covidwho-1105743

ABSTRACT

BACKGROUND: Novel coronavirus pneumonia has been the most serious worldwide public health emergency since being identified in December 2019. The rapid spread of the pandemic and the strong human to human infection rate of COVID-19 poses a great prevention challenge. There has been an explosion in the number of confirmed cases in several cities near Wuhan, including the highest in Honghu, Jinzhou. Owing to the limited admission capacity and medical resources, increasing numbers of suspected cases of COVID-19 infection were difficult to confirm or treat. CASE PRESENTATION: Following the arrival of the Guangdong medical aid team on 11 February, 2020, COVID-19 care in Honghu saw changes after a series of solutions were implemented based on the 'Four-Early' and 'Four-centralization' management measures. The 'Four-Early' measures are: early detection, early reporting, early quarantine, and early treatment for meeting an urgent need like the COVID-19 pandemic. 'Four-centralization' refers to the way in which recruited medical teams can make full use of medical resources to give patients the best treatment. These solutions successfully increased the recovery rate and reduced mortality among patients with COVID-19 in Honghu. CONCLUSIONS: This management strategy is called the 'Honghu Model' which can be generalized to enable the prevention and management of COVID-19 worldwide.


Subject(s)
/prevention & control , /epidemiology , China/epidemiology , Cities/epidemiology , Hospitalization , Humans , Pandemics/prevention & control , Patient Care Management , Public Health , Quarantine , /isolation & purification
12.
Cell Host Microbe ; 29(4): 551-563.e5, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1101147

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a burst in the upper respiratory portal for high transmissibility. To determine human neutralizing antibodies (HuNAbs) for entry protection, we tested three potent HuNAbs (IC50 range, 0.0007-0.35 µg/mL) against live SARS-CoV-2 infection in the golden Syrian hamster model. These HuNAbs inhibit SARS-CoV-2 infection by competing with human angiotensin converting enzyme-2 for binding to the viral receptor binding domain (RBD). Prophylactic intraperitoneal or intranasal injection of individual HuNAb or DNA vaccination significantly reduces infection in the lungs but not in the nasal turbinates of hamsters intranasally challenged with SARS-CoV-2. Although postchallenge HuNAb therapy suppresses viral loads and lung damage, robust infection is observed in nasal turbinates treated within 1-3 days. Our findings demonstrate that systemic HuNAb suppresses SARS-CoV-2 replication and injury in lungs; however, robust viral infection in nasal turbinate may outcompete the antibody with significant implications to subprotection, reinfection, and vaccine.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , /immunology , Turbinates/virology , /physiology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , /virology , Cricetinae , Female , HEK293 Cells , Humans , Male , Mesocricetus , Viral Load
13.
BMC Microbiol ; 21(1): 56, 2021 02 19.
Article in English | MEDLINE | ID: covidwho-1090700

ABSTRACT

BACKGROUND: Gastrointestinal symptoms are common in COVID-19 patients and SARS-CoV-2 RNA has been detected in the patients' feces, which could lead to fecal-oral transmission. Therefore, fecal sample testing with real-time RT-PCR is highly recommended as a routine test for SARS-CoV-2 infection. However, varying rates of detection in fecal sample have been reported. The aim of this study was to provide insights into the detection rates of SARS-CoV-2 in COVID-19 patients' fecal sample by using four real-time RT-PCR kits and two pretreatment methods (inactive and non-inactive). RESULTS: The detection rate of Trizol pretreatment group was slightly higher than that of Phosphate Buffered Saline (PBS) groups, showing that pretreatment and inactivation by Trizol had no influence to SARS-CoV-2 nucleic acid test (NAT) results. 39.29% detection rate in fecal sample by DAAN was obtained, while Bio-germ was 40.48%, Sansure 34.52%, and GeneoDx 33.33%. The former three kits had no significant difference. The DAAN kit detection rates of ORF1ab and N gene were nearly equal and Ct value distribution was more scattered, while the Bio-germ kit distribution was more clustered. The positive rate of SARS-COV-2 in fecal samples correlated with the severity of the disease, specifically, severe cases were less likely to be identified than asymptomatic infection in the DAAN group (adjusted OR 0.05, 95%CI = 0.00 ~ 0.91). CONCLUSIONS: Trizol should be of choice as a valid and safe method for pretreatment of fecal samples of SARS-CoV-2. All real-time RT-PCR kits assessed in this study can be used for routine detection of SARS-CoV-2 in fecal samples. While DAAN, with high NAT positive rate, could be the best out of the 4 kits used in this study. SARS-CoV-2 positive rate in fecal sample was related to the severity of illness.


Subject(s)
/diagnosis , Feces/microbiology , Real-Time Polymerase Chain Reaction/methods , /pathogenicity , Adult , Female , Humans , Male , Middle Aged , Open Reading Frames/genetics , RNA, Viral/genetics , /isolation & purification
14.
Int J Infect Dis ; 104: 641-648, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1065189

ABSTRACT

OBJECTIVE: To assess the efficacy and safety of ribavirin and interferon-α (RBV/IFN-α) therapy in COVID-19 patients. METHODS: A multicenter, retrospective cohort study of COVID-19 patients admitted to 4 hospitals in Hubei Province, China, from 31 December 2019 to 31 March 2020. Patients were divided into 2 groups according to their exposure to RBV/IFN-α therapy within 48 h of admission. Mixed-effect Cox model and Logistic regression were used to explore the association between early treatments of RBV/IFN-α and primary outcomes. RESULTS: Of 2037 patients included, 1281 received RBV/IFN-α (RBV, IFN-α or RBV combined with IFN-α) treatments and 756 received none of these treatments. In a mixed effect model, RBV/IFN-α therapy was not associated with progression from non-severe into severe type (adjusted hazard ratio (aHR) = 1.09, 95% CI: 0.88-1.36) or with reduction in 30-day mortality (aHR = 0.89, 95% CI: 0.61-1.30). However, it was associated with a higher probability of hospital stay >15 days (adjusted odds ratio (aOR) = 2.11, 95% CI: 1.68-2.64) compared with no RBV/IFN-α therapy. The propensity score-matched cohort and subgroup analysis displayed similar results. CONCLUSION: RBV/IFN-α therapy was not observed to improve clinical outcomes in COVID-19 patients suggesting that RBV/IFN-α therapy should be avoided in COVID-19 treatment.


Subject(s)
Antiviral Agents/administration & dosage , Interferon-alpha/administration & dosage , Ribavirin/administration & dosage , Adult , Aged , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Retrospective Studies
15.
Front Public Health ; 8: 604870, 2020.
Article in English | MEDLINE | ID: covidwho-1063368

ABSTRACT

Objective: To clarify the correlation between temperature and the COVID-19 pandemic in Hubei. Methods: We collected daily newly confirmed COVID-19 cases and daily temperature for six cities in Hubei Province, assessed their correlations, and established regression models. Results: For temperatures ranging from -3.9 to 16.5°C, daily newly confirmed cases were positively correlated with the maximum temperature ~0-4 days prior or the minimum temperature ~11-14 days prior to the diagnosis in almost all selected cities. An increase in the maximum temperature 4 days prior by 1°C was associated with an increase in the daily newly confirmed cases (~129) in Wuhan. The influence of temperature on the daily newly confirmed cases in Wuhan was much more significant than in other cities. Conclusion: Government departments in areas where temperatures range between -3.9 and 16.5°C and rise gradually must take more active measures to address the COVID-19 pandemic.


Subject(s)
Air , Climate , Temperature , /epidemiology , China , Cities , Humans
16.
Sci Rep ; 11(1): 2169, 2021 01 26.
Article in English | MEDLINE | ID: covidwho-1049973

ABSTRACT

To evaluate the predictive effect of T-lymphoid subsets on the conversion of common covid-19 to severe. The laboratory data were collected retrospectively from common covid-19 patients in the First People's Hospital of Zaoyang, Hubei Province, China and the Third People's Hospital of Kunming, Yunnan Province, China, between January 20, 2020 and March 15, 2020 and divided into training set and validation set. Univariate and multivariate logistic regression was performed to investigate the risk factors for the conversion of common covid-19 to severe in the training set, the prediction model was established and verified externally in the validation set. 60 (14.71%) of 408 patients with common covid-19 became severe in 6-10 days after diagnosis. Univariate and multiple logistic regression analysis revealed that lactate (P = 0.042, OR = 1097.983, 95% CI 1.303, 924,798.262) and CD8+ T cells (P = 0.010, OR = 0.903, 95% CI 0.835, 0.975) were independent risk factors for general type patients to turn to severe type. The area under ROC curve of lactate and CD8+ T cells was 0.754 (0.581, 0.928) and 0.842 (0.713, 0.970), respectively. The actual observation value was highly consistent with the prediction model value in curve fitting. The established prediction model was verified in 78 COVID-19 patients in the verification set, the area under the ROC curve was 0.906 (0.861, 0.981), and the calibration curve was consistent. CD8+ T cells, as an independent risk factor, could predict the transition from common covid-19 to severe.


Subject(s)
CD8-Positive T-Lymphocytes/virology , Disease Progression , Adrenal Cortex Hormones/administration & dosage , Adult , Algorithms , China , Female , Humans , Hypoxia/metabolism , Lopinavir/administration & dosage , Male , Methylprednisolone/administration & dosage , Middle Aged , Multivariate Analysis , Oxygen/chemistry , Predictive Value of Tests , Prognosis , ROC Curve , Real-Time Polymerase Chain Reaction , Regression Analysis , Retrospective Studies , Risk Factors , Ritonavir/administration & dosage
17.
EClinicalMedicine ; 25: 100478, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1047557

ABSTRACT

Background: The outbreak of a new coronavirus (SARS-CoV-2) poses a great challenge to global public health. New and effective intervention strategies are urgently needed to combat the disease. Methods: We conducted an open-label, non-randomized, clinical trial involving moderate COVID-19 patients according to study protocol. Patients were assigned in a 1:2 ratio to receive either aerosol inhalation treatment with IFN-κ and TFF2, every 48 h for three consecutive dosages, in addition to standard treatment (experimental group), or standard treatment alone (control group). The end point was the time to discharge from the hospital. This study is registered with chictr.org.cn, ChiCTR2000030262. Findings: A total of thirty-three eligible COVID-19 patients were enrolled from February 1, 2020 to April 6, 2020, eleven were assigned to the IFN-κ plus TFF2 group, and twenty-two to the control group. Safety and efficacy were evaluated for both groups. No treatment-associated severe adverse effects (SAE) were observed in the group treated with aerosol inhalation of IFN-κ plus TFF2, and no significant differences in the safety evaluations were observed between experimental and control groups. CT imaging was performed in all patients with the median improvement time of 5.0 days (IQR 3.0-9.0) in the experimental group versus 8.5 days (IQR 3.0-17.0) in the control group (p<0.05). In addition, the experimental group had a significant shorten median time in cough relief (4.5 days [IQR 2.0-7.0]) than the control group did (10.0 days [IQR 6.0-21.0])(p<0.005), in viral RNA reversion of 6.0 days (IQR 2.0-13.0) in the experimental group vs 9.5 days (IQR 3.0-23.0) in the control group (p < 0.05), and in the median hospitalization stays of 12.0 days (IQR 7.0-20.0) in the experimental group vs 15.0 days (IQR 10.0-25.0) in the control group (p<0.001), respectively. Interpretation: Aerosol inhalation of IFN-κ plus TFF2 is a safe treatment and is likely to significantly facilitate clinical improvement, including cough relief, CT imaging improvement, and viral RNA reversion, thereby achieves an early release from hospitalization. These data support to explore a scale-up trial with IFN-κ plus TFF2. Funding: National Major Project for Control and Prevention of Infectious Disease in China, Shanghai Science and Technology Commission, Shanghai Municipal Health Commission.

18.
Respiration ; 100(2): 116-126, 2021.
Article in English | MEDLINE | ID: covidwho-1044350

ABSTRACT

BACKGROUND: There is still no clinical evidence available to support or to oppose corticosteroid treatment for coronavirus disease 2019 (COVID-19) pneumonia. OBJECTIVE: To investigate the efficacy and safety of corticosteroid given to the hospitalized patients with COVID-19 pneumonia. METHODS: This was a prospective, multicenter, single-blind, randomized control trial. Adult patients with COVID-19 pneumonia who were admitted to the general ward were randomly assigned to either receive methylprednisolone or not for 7 days. The primary end point was the incidence of clinical deterioration 14 days after randomization. RESULTS: We terminated this trial early because the number of patients with COVID-19 pneumonia in all the centers decreased in late March. Finally, a total of 86 COVID-19 patients underwent randomization. There was no difference of the incidence of clinical deterioration between the methylprednisolone group and control group (4.8 vs. 4.8%, p = 1.000). The duration of throat viral RNA detectability in the methylprednisolone group was 11 days (interquartile range, 6-16 days), which was significantly longer than that in the control group (8 days [2-12 days], p = 0.030). There were no significant differences between the 2 groups in other secondary outcomes. Mass cytometry discovered CD3+ T cells, CD8+ T cells, and NK cells in the methylprednisolone group which were significantly lower than those in the control group after randomization (p < 0.05). CONCLUSIONS: From this prematurely closed trial, we found that the short-term early use of corticosteroid could suppress the immune cells, which may prolong severe acute respiratory syndrome coronavirus 2 shedding in patients with COVID-19 pneumonia. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04273321.


Subject(s)
/drug therapy , Glucocorticoids/therapeutic use , Hospitalization , Methylprednisolone/therapeutic use , Pharynx/chemistry , RNA, Viral/isolation & purification , Virus Shedding , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , CD3 Complex , CD8-Positive T-Lymphocytes , /therapy , Disease Progression , Early Medical Intervention , Extracorporeal Membrane Oxygenation , Female , Humans , Killer Cells, Natural , Lymphocyte Count , Male , Middle Aged , Oxygen Inhalation Therapy , Patients' Rooms , Pharynx/virology , Proportional Hazards Models , Respiration, Artificial , Single-Blind Method , T-Lymphocyte Subsets , T-Lymphocytes , Time Factors , Treatment Outcome
19.
Histol Histopathol ; 35(10): 1077-1082, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1024809

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) outbreak began in the city of Wuhan, whereupon it rapidly spread throughout China and subsequently across the world. Rapid transmission of COVID-19 has caused wide-spread panic. Many established medications have been used to treat the disease symptoms; however, no specific drugs or vaccines have been developed. Organoids derived from human induced pluripotent stem cells (iPSCs) may serve as suitable infection models for ex vivo mimicking of the viral life cycle and drug screening. Human iPSC-3D organoids, self-organised tissues with multiple cell environments, have a similar structure and function as real human organs; hence, these organoids allow greater viral infection efficiency, mimic the natural host-virus interactions, and are suitable for long-term experimentation. Here, we suggest the use of a functional human iPSC-organoid that could act as a reliable and feasible ex vivo infection model for investigation of the virus. This approach will provide much needed insight into the underlying molecular dynamics of COVID-19 for the development of novel treatment and prevention strategies.

20.
The International Journal of Sociology and Social Policy ; 40(9/10):939-961, 2020.
Article in English | WHO COVID | ID: covidwho-1020352

ABSTRACT

PurposeThis paper empirically investigates how cultural variations in individualism and tightness affected the containment of COVID-19 using data from 54 nations during a 30-day period of government intervention Design/methodology/approachThe authors utilized the hierarchical regression approach to check the effects of three cultural variables – the individualism measure, taken from Hofstede’s six-dimension national culture index, and the measure of cultural tightness, based on the three tightness–looseness indexes calculated by Irem Uz (2015) and their interaction – on the changes in the prevalence rate (ΔPR) and crude mortality rate (ΔCMR) and case fatality rate (CFR) while controlling for the stringency of government responses to COVID-19, median age and population density FindingsSignificant relationships were found between cultural variables and national performance in slowing the spread of the coronavirus, measured by ΔPR, ΔCMR and CFR After controlling for the stringency of government responses, median age and population density, the authors found that cultural tightness and individualism as well as their interactions remain to be pivotal Loose and individualistic cultures led to faster increases in PR and CMR and higher CFR A four-quadrant conceptual framework is developed to categorize and discuss the national differences Originality/valueThe paper integrated two constructs – cultural tightness–looseness and individualism–collectivism – to form a theoretical lens to guide the authors’ analyses while using the real-time COVID-19 data as a natural experiment for theorizing and testing This study’s findings have significant policy implications in government responses, strategic planning, cultural adaptability and policy implementations for the world’s continuous battle against the pandemic

SELECTION OF CITATIONS
SEARCH DETAIL