Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Nat Chem Biol ; 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1960395

ABSTRACT

SARS-CoV-2 entry into cells requires specific host proteases; however, no successful in vivo applications of host protease inhibitors have yet been reported for treatment of SARS-CoV-2 pathogenesis. Here we describe a chemically engineered nanosystem encapsulating CRISPR-Cas13d, developed to specifically target lung protease cathepsin L (Ctsl) messenger RNA to block SARS-CoV-2 infection in mice. We show that this nanosystem decreases lung Ctsl expression in normal mice efficiently, specifically and safely. We further show that this approach extends survival of mice lethally infected with SARS-CoV-2, correlating with decreased lung virus burden, reduced expression of proinflammatory cytokines/chemokines and diminished severity of pulmonary interstitial inflammation. Postinfection treatment by this nanosystem dramatically lowers the lung virus burden and alleviates virus-induced pathological changes. Our results indicate that targeting lung protease mRNA by Cas13d nanosystem represents a unique strategy for controlling SARS-CoV-2 infection and demonstrate that CRISPR can be used as a potential treatment for SARS-CoV-2 infection.

2.
Sci Immunol ; : eadd4853, 2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1949945

ABSTRACT

SARS-CoV-2 mRNA vaccination induces robust humoral and cellular immunity in the circulation; however, it is currently unknown whether it elicits effective immune responses in the respiratory tract, particularly against variants of concern (VOCs), including Omicron. We compared the SARS-CoV-2 S-specific total and neutralizing antibody responses, and B and T cell immunity, in the bronchoalveolar lavage fluid (BAL) and blood of COVID-19 vaccinated individuals and hospitalized patients. Vaccinated individuals had significantly lower levels of neutralizing antibody against D614G, Delta (B.1.617.2) and Omicron BA.1.1 in the BAL compared to COVID-19 convalescents, despite robust S-specific antibody responses in the blood. Furthermore, mRNA vaccination induced circulating S-specific B and T cell immunity, but in contrast to COVID-19 convalescents, these responses were absent in the BAL of vaccinated individuals. Using a mouse immunization model, we demonstrated that systemic mRNA vaccination alone induced weak respiratory mucosal neutralizing antibody responses, especially against SARS-CoV-2 Omicron BA.1.1 in mice; however, a combination of systemic mRNA vaccination plus mucosal adenovirus-S immunization induced strong neutralizing antibody responses, not only against the ancestral virus but also the Omicron BA.1.1 variant. Together, our study supports the contention that the current COVID-19 vaccines are highly effective against severe disease development, likely through recruiting circulating B and T cell responses during re-infection, but offer limited protection against breakthrough infection, especially by Omicron sublineage. Hence, mucosal booster vaccination is needed to establish robust sterilizing immunity in the respiratory tract against SARS-CoV-2, including infection by Omicron sublineage and future VOCs.

3.
mSphere ; : e0019322, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1891742

ABSTRACT

In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies" (https://www.cancer.gov/research/key-initiatives/covid-19/coronavirus-research-initiatives/serological-sciences-network). SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology standard reference material and first WHO international standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. SeroNet institutions reported development of a total of 27 enzyme-linked immunosorbent assay (ELISA) methods, 13 multiplex assays, and 9 neutralization assays and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. In conclusion, SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons. IMPORTANCE SeroNet institutions have developed or implemented 61 diverse COVID-19 serological assays and are collaboratively working to harmonize these assays using reference materials to establish standardized reporting units. This will facilitate clinical interpretation of serology results and cross-comparison of research data.

6.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-336071

ABSTRACT

Summary The rising case numbers of the SARS-CoV-2 Omicron BA.4, BA.5, and BA.2.12.1 subvariants has generated serious concern about the course of the pandemic. Here we examine the neutralization resistance, infectivity, processing, and fusogenicity of spike from the BA.4/5 and BA.2.12.1 SARS-CoV-2 variants compared with other Omicron subvariants and Delta. Critically, we found that the new Omicron subvariants BA.4/5 and BA.2.12.1 were more resistant to neutralization by mRNA-vaccinated and boosted health care worker sera and Omicron-BA.1-wave patient sera than were the BA.1 and BA.2 variants. Interestingly, Delta-wave patient sera neutralized more efficiently against not only Delta but also BA.4/5 and BA.2.12.1 variants that also contain substitutions at position L452, similar to Delta. The BA.4/5 and BA.2.12.1 variants also exhibited higher fusogenicity, and increased spike processing, dependent on the L452 substitution. These results highlight the key role of the L452R and L452Q mutations in BA.4/5 and BA.2.12.1 subvariants.

7.
Cell Host Microbe ; 2022 Apr 25.
Article in English | MEDLINE | ID: covidwho-1803742

ABSTRACT

Recent reports of SARS-CoV-2 Omicron variant sub-lineages, BA.1, BA.1.1, and BA.2, have reignited concern over potential escape from vaccine- and infection-induced immunity. We examine the sensitivity of these sub-lineages and other major variants to neutralizing antibodies from mRNA-vaccinated and boosted individuals, as well as recovered COVID-19 patients, including those infected with Omicron. We find that all Omicron sub-lineages, especially BA.1 and BA.1.1, exhibit substantial immune escape that is largely overcome by mRNA vaccine booster doses. While Omicron BA.1.1 escapes almost completely from neutralization by early-pandemic COVID-19 patient sera and to a lesser extent from sera of Delta-infected patients, BA.1.1 is sensitive to Omicron-infected patient sera. Critically, all Omicron sub-lineages, including BA.2, are comparably neutralized by Omicron patient sera. These results highlight the importance of booster vaccine doses for protection against all Omicron variants and provide insight into the immunity from natural infection against Omicron sub-lineages.

8.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-332613

ABSTRACT

Vaccines against SARS-CoV-2 that induce mucosal immunity capable of preventing infection and disease remain urgently needed. We show that intramuscular priming of mice with an alum and BcfA-adjuvanted Spike subunit vaccine, followed by a BcfA-adjuvanted mucosal booster, generated Th17 polarized tissue resident CD4+ T cells, and mucosal and serum antibodies. The serum antibodies efficiently neutralized SARS-CoV-2 and its Delta variant, suggesting cross-protection against a recent variant of concern (VOC). Immunization with this heterologous vaccine prevented weight loss following challenge with mouse-adapted SARS-CoV-2 and reduced viral replication in the nose and lungs. Histopathology showed a strong leukocyte and polymorphonuclear (PMN) cell infiltrate without epithelial damage in mice immunized with BcfA-containing vaccines. In contrast, viral load was not reduced in the upper respiratory tract of IL-17 knockout mice immunized with the same formulation, suggesting that the Th17 polarized T cell responses are critical for protection. We show that vaccines adjuvanted with alum and BcfA, delivered through a heterologous prime-pull regimen, protect against SARS-CoV-2 infection without causing enhanced respiratory disease.

9.
Multiple sclerosis journal - experimental, translational and clinical ; 8(1), 2022.
Article in English | EuropePMC | ID: covidwho-1755751

ABSTRACT

Background Patients with multiple sclerosis (pwMS) are often treated with disease modifying therapies (DMT) with immunomodulatory effects. This is of particular concern following the development of several vaccines to combat coronavirus disease 19 (COVD-19), a potentially fatal illness caused by SARS-CoV-2. Objectives To determine the efficacy of SARS-CoV-2 vaccination in pwMS and the impact of disease modifying therapies (DMT) on vaccine response. Methods This is a prospective longitudinal study in pwMS. Longitudinal serum samples were obtained prior to, and after SARS-CoV-2 mRNA vaccination. A novel neutralizing antibody (nAb) assay was used to determine nAbs titres against SARS-CoV-2 spike. Results We observed that (1) pwMS on B-cell depleting therapies exhibited reduced response to vaccination compared to other pwMS, correlating with time from last anti-CD20 infusion, (2) prior COVID-19 illness, DMT category, and pyramidal function were significant predictors of vaccine responsiveness, and (3) circulating absolute lymphocyte count (ALC) and IgG levels correlated with nAb levels. Conclusions We demonstrate that pwMS exhibit reduced nAb response to mRNA vaccination dependent on DMT status and identify predictive biomarkers for vaccine efficacy. We conclude that additional vaccination strategies may be necessary to achieve protective immunity in pwMS.

10.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330744

ABSTRACT

The impact of SARS-CoV2 vaccination in cancer patients remains incompletely understood given the heterogeneity of cancer and cancer therapies. We assessed vaccine-induced antibody response to the SARS-CoV2 Omicron (B.1.1.529) variant in 57 patients with B cell malignancies with and without active B cell-targeted therapy. Ancestral- and Omicron- reactive antibody levels were determined by ELISA and neutralization assays. In over one third of vaccinated patients at the pre-booster timepoint, there were no ELISA-detectable antibodies against either the ancestral strain or Omicron variant. The lack of vaccine-induced antibodies was predominantly in patients receiving active therapy such as anti-CD20 monoclonal antibody (mAb) or Bruton's tyrosine kinase inhibitors (BTKi). While booster immunization was able to induce detectable antibodies in a small fraction of seronegative patients, the benefit was disproportionately evident in patients not on active therapy. Importantly, in patients with post-booster ELISA-detectable antibodies, there was a positive correlation of antibody levels against the ancestral strain and Omicron variant. Booster immunization increased overall antibody levels, including neutralizing antibody titers against the ancestral strain and Omicron variant;however, predominantly in patients without active therapy. Furthermore, ancestral strain neutralizing antibody titers were about 5-fold higher in comparison with those to Omicron, suggesting that even with booster administration, there may be reduced protection against the Omicron variant. Interestingly, in almost all patients regardless of active therapy, including those unable to generate detectable antibodies against SARS-CoV2 spike, we observed comparable levels of EBV, influenza, and common cold coronavirus reactive antibodies demonstrating that B cell-targeting therapies primarily impair de novo but not pre-existing antibody levels. These findings suggest that patients with B cell malignancies on active therapy may be at disproportionately higher risk to new versus endemic viral infection and suggest utility for vaccination prior to B cell-targeted therapy.

11.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329544

ABSTRACT

Background: In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and to develop, validate, improve, and implement serological testing and associated technologies. SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. Methods: To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. SARS-CoV-2 serology standard reference material and First WHO International Standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. Results: SeroNet institutions reported development of a total of 27 ELISA methods, 13 multiplex assays, 9 neutralization assays, and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. Conclusions: SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 virus and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons.

12.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327171

ABSTRACT

SARS-CoV-2 mRNA vaccination induces robust humoral and cellular immunity in the circulation;however, it is currently unknown whether it elicits effective immune responses in the respiratory tract, particularly against variants of concern (VOCs), including Omicron. We compared the SARS-CoV-2 S-specific total and neutralizing antibody (Ab) responses, and B and T cell immunity, in the bronchoalveolar lavage fluid (BAL) and blood of COVID-19 vaccinated individuals and hospitalized patients. Vaccinated individuals had significantly lower levels of neutralizing Ab against D614G, Delta and Omicron in the BAL compared to COVID-19 convalescents, despite robust S-specific Ab responses in the blood. Further, mRNA vaccination induced significant circulating S-specific B and T cell immunity, but in contrast to COVID-19 convalescents, these responses were absent in the BAL of vaccinated individuals. Using an animal immunization model, we demonstrate that systemic mRNA vaccination alone induced weak respiratory mucosal neutralizing Ab responses, especially against SARS-CoV-2 Omicron;however, a combination of systemic mRNA vaccination plus mucosal adenovirus-S immunization induced strong neutralizing Ab response, not only against the ancestral virus but also the Omicron variant. Together, our study supports the contention that the current COVID-19 vaccines are highly effective against severe disease development, likely through recruiting circulating B and T cell responses during re-infection, but offer limited protection against breakthrough infection, especially by Omicron. Hence, mucosal booster vaccination is needed to establish robust sterilizing immunity in the respiratory tract against SARS-CoV-2, including infection by Omicron and future variants.

13.
Sci Transl Med ; 14(637): eabn8057, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1685483

ABSTRACT

The waning efficacy of SARS-CoV-2 vaccines, combined with the continued emergence of variants resistant to vaccine-induced immunity, has reignited debate over the need for booster vaccine doses. To address this, we examined the neutralizing antibody response against the spike protein of five major SARS-CoV-2 variants, D614G, Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529), in health care workers (HCWs) vaccinated with SARS-CoV-2 mRNA vaccines. Serum samples were collected before vaccination, 3 weeks after first vaccination, 1 month after second vaccination, and 6 months after second vaccination. Minimal neutralizing antibody titers were detected against Omicron pseudovirus at all four time points, including for most patients who had SARS-CoV-2 breakthrough infections. Neutralizing antibody titers against all other variant spike protein-bearing pseudoviruses declined markedly from 1 to 6 months after the second mRNA vaccine dose, although SARS-CoV-2 infection boosted vaccine responses. In addition, mRNA-1273-vaccinated HCWs exhibited about twofold higher neutralizing antibody titers than BNT162b2-vaccinated HCWs. Together, these results demonstrate possible waning of antibody-mediated protection against SARS-CoV-2 variants that is dependent on prior infection status and the mRNA vaccine received. They also show that the Omicron variant spike protein can almost completely escape from neutralizing antibodies elicited in recipients of only two mRNA vaccine doses.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , RNA, Messenger/genetics , Vaccination , Vaccines, Synthetic
15.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: covidwho-1599544

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the global COVID-19 pandemic. Herein, we provide evidence that SARS-CoV-2 spreads through cell-cell contact in cultures, mediated by the spike glycoprotein. SARS-CoV-2 spike is more efficient in facilitating cell-to-cell transmission than is SARS-CoV spike, which reflects, in part, their differential cell-cell fusion activity. Interestingly, treatment of cocultured cells with endosomal entry inhibitors impairs cell-to-cell transmission, implicating endosomal membrane fusion as an underlying mechanism. Compared with cell-free infection, cell-to-cell transmission of SARS-CoV-2 is refractory to inhibition by neutralizing antibody or convalescent sera of COVID-19 patients. While angiotensin-converting enzyme 2 enhances cell-to-cell transmission, we find that it is not absolutely required. Notably, despite differences in cell-free infectivity, the authentic variants of concern (VOCs) B.1.1.7 (alpha) and B.1.351 (beta) have similar cell-to-cell transmission capability. Moreover, B.1.351 is more resistant to neutralization by vaccinee sera in cell-free infection, whereas B.1.1.7 is more resistant to inhibition by vaccinee sera in cell-to-cell transmission. Overall, our study reveals critical features of SARS-CoV-2 spike-mediated cell-to-cell transmission, with important implications for a better understanding of SARS-CoV-2 spread and pathogenesis.


Subject(s)
COVID-19/immunology , COVID-19/transmission , SARS-CoV-2/immunology , Virus Internalization , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral , COVID-19/therapy , Cell Fusion , Chlorocebus aethiops , HEK293 Cells , Humans , Immunization, Passive , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
17.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-296045

ABSTRACT

ABSTRACT BACKGROUND SARS-CoV-2 causes COVID-19 through direct lysis of infected lung epithelial cells, which releases damage-associated molecular patterns (DAMPs) and induces a pro-inflammatory cytokine milieu causing systemic inflammation. Anti-viral and anti-inflammatory agents have shown limited therapeutic efficacy. Soluble CD24 (CD24Fc) is able to blunt the broad inflammatory response induced by DAMPs in multiple models. A recent randomized phase III trial evaluating the impact of CD24Fc in patients with severe COVID-19 demonstrated encouraging clinical efficacy. METHODS We studied peripheral blood samples obtained from patients enrolled at a single institution in the SAC-COVID trial ( NCT04317040 ) collected before and after treatment with CD24Fc or placebo. We performed high dimensional spectral flow cytometry analysis of peripheral blood mononuclear cells and measured the levels of a broad array of cytokines and chemokines. A systems analytical approach was used to discern the impact of CD24Fc treatment on immune homeostasis in patients with COVID-19. FINDINGS Twenty-two patients were enrolled, and the clinical characteristics from the CD24Fc vs. placebo groups were matched. Using high-content spectral flow cytometry and network-level analysis, we found systemic hyper-activation of multiple cellular compartments in the placebo group, including CD8 + T cells, CD4 + T cells, and CD56 + NK cells. By contrast, CD24Fc-treated patients demonstrated blunted systemic inflammation, with a return to homeostasis in both NK and T cells within days without compromising the ability of patients to mount an effective anti-Spike protein antibody response. A single dose of CD24Fc significantly attenuated induction of the systemic cytokine response, including expression of IL-10 and IL-15, and diminished the coexpression and network connectivity among extensive circulating inflammatory cytokines, the parameters associated with COVID-19 disease severity. INTERPRETATION Our data demonstrates that CD24Fc treatment rapidly down-modulates systemic inflammation and restores immune homeostasis in SARS-CoV-2-infected individuals, supporting further development of CD24Fc as a novel therapeutic against severe COVID-19. FUNDING NIH

18.
Cell Biosci ; 11(1): 197, 2021 Nov 21.
Article in English | MEDLINE | ID: covidwho-1528695

ABSTRACT

There is currently a critical need to determine the efficacy of SARS-CoV-2 vaccination for immunocompromised patients. In this study, we determined the neutralizing antibody response in 160 cancer patients diagnosed with chronic lymphocytic leukemia (CLL), lung cancer, breast cancer, and various non-Hodgkin's lymphomas (NHL), after they received two doses of mRNA vaccines. Serum from 46 mRNA vaccinated health care workers (HCWs) served as healthy controls. We discovered that (1) cancer patients exhibited reduced neutralizing antibody titer (NT50) compared to HCWs; (2) CLL and NHL patients exhibited the lowest NT50 levels, with 50-60% of them below the detection limit; (3) mean NT50 levels in patients with CLL and NHL was ~2.6 fold lower than those with solid tumors; and (4) cancer patients who received anti-B cell therapy exhibited significantly reduced NT50 levels. Our results demonstrate an urgent need for novel immunization strategies for cancer patients against SARS-CoV-2, particularly those with hematological cancers and those on anti-B cell therapies.

19.
[Unspecified Source]; 2020.
Preprint in English | [Unspecified Source] | ID: ppcovidwho-292812

ABSTRACT

Rapid and specific antibody testing is crucial for improved understanding, control, and treatment of COVID-19 pathogenesis. Herein, we describe and apply a rapid, sensitive, and accurate virus neutralization assay for SARS-CoV-2 antibodies. The new assay is based on an HIV-1 lentiviral vector that contains a secreted intron Gaussia luciferase or secreted Nano-luciferase reporter cassette, pseudotyped with the SARS-CoV-2 spike (S) glycoprotein, and is validated with a plaque reduction assay using an authentic, infectious SARS-CoV-2 strain. The new assay was used to evaluate SARS-CoV-2 antibodies in serum from individuals with a broad range of COVID-19 symptoms, including intensive care unit (ICU) patients, health care workers (HCWs), and convalescent plasma donors. The highest neutralizing antibody titers were observed among ICU patients, followed by general hospitalized patients, HCWs and convalescent plasma donors. Our study highlights a wide phenotypic variation in human antibody responses against SARS-CoV-2, and demonstrates the efficacy of a novel lentivirus pseudotype assay for high-throughput serological surveys of neutralizing antibody titers in large cohorts.

20.
mBio ; 12(5): e0251021, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1450587

ABSTRACT

The sensitivity of SARS-CoV-2 variants of concern (VOCs) to neutralizing antibodies has largely been studied in the context of key receptor binding domain (RBD) mutations, including E484K and N501Y. Little is known about the epistatic effects of combined SARS-CoV-2 spike mutations. We now investigate the neutralization sensitivity of variants containing the non-RBD mutation Q677H, including B.1.525 (Nigerian isolate) and Bluebird (U.S. isolate) variants. The effect on neutralization of Q677H was determined in the context of the RBD mutations and in the background of major VOCs, including B.1.1.7 (United Kingdom, Alpha), B.1.351 (South Africa, Beta), and P1-501Y-V3 (Brazil, Gamma). We demonstrate that the Q677H mutation increases viral infectivity and syncytium formation, as well as enhancing resistance to neutralization for VOCs, including B.1.1.7 and P1-501Y-V3. Our work highlights the importance of epistatic interactions between SARS-CoV-2 spike mutations and the continued need to monitor Q677H-bearing VOCs. IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, is rapidly evolving to be more transmissible and to evade acquired immunity. To date, most investigations of SARS-CoV-2 variants have focused on RBD mutations. However, the impact of non-RBD mutations and their synergy with studied RBD mutations are poorly understood. Here, we examine the role of the non-RBD Q677H mutation arising in many SARS-CoV-2 lineages, including VOCs. We demonstrate that the Q677H mutation enhances viral infectivity and confers neutralizing antibody resistance, particularly in the background of other SARS-CoV-2 VOCs.


Subject(s)
Antibodies, Neutralizing/metabolism , COVID-19/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/metabolism , HEK293 Cells , Humans , Mutation , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL