ABSTRACT
COVID-19 has undergone several mutations and is still spreading in most countries now. PA has positive benefits in the prevention of COVID-19 infection and counteracting the negative physical and mental effects caused by COVID-19. However, relevant evidence has indicated a high prevalence of physical inactivity among the general population, which has worsened due to the outbreak of the pandemic, and there is a severe lack of exercise guidance and mitigation strategies to advance the knowledge and role of PA to improve physical and mental health in most countries during the epidemic. This study surveyed the effects of COVID-19 on PA in Chinese residents during the pandemic and provided important reference and evidence to inform policymakers and formulate policies and planning for health promotion and strengthening residents' PA during periods of public health emergencies. ANOVA, Kolmogorov-Smirnov, the chi-square test and Spearman correlation analysis were used for statistical analysis. A total of 14,715 participants were included. The results show that nearly 70% of Chinese residents had inadequate PA (95%CI 58.0%-82.19%) during the COVID-19 outbreak, which was more than double the global level (27.5%, 95%CI 25.0%-32.2%). The content, intensity, duration, and frequency of PA were all affected during the period of home isolation, and the types of PA may vary among different ages. The lack of physical facilities and cultural environment is the main factor affecting PA. However, there was no significant correlation between insufficient PA and the infection rate. During the period of home isolation and social distance of epidemic prevention, it is necessary to strengthen the scientific remote network monitoring and guidance for the process of PA in China.
ABSTRACT
BACKGROUND: The major histocompatibility complex (MHC) and the killer cell immunoglobulin-like receptors (KIR) are key regulators of immune responses. The cynomolgus macaque, an Old World monkey species, can be applied as an important preclinical model for studying human diseases, including coronavirus disease 2019 (COVID-19). Several MHC-KIR combinations have been associated with either a poor or good prognosis. Therefore, macaques with a well-characterized immunogenetic profile may improve drug evaluation and speed up vaccine development. At present, a complete overview of the MHC and KIR haplotype organizations in cynomolgus macaques is lacking, and characterization by conventional techniques is hampered by the extensive expansion of the macaque MHC-B region that complicates the discrimination between genes and alleles. METHODS: We assembled complete MHC and KIR genomic regions of cynomolgus macaque using third-generation long-read sequencing approach. We identified functional Mafa-B loci at the transcriptome level using locus-specific amplification in a cohort of 33 Vietnamese cynomolgus macaques. RESULTS: This is the first physical mapping of complete MHC and KIR gene regions in a Vietnamese cynomolgus macaque. Furthermore, we identified four functional Mafa-B loci (B2, B3, B5, and B6) and showed that alleles of the Mafa-I*01, -B*056, -B*034, and -B*001 functional lineages, respectively, are highly frequent in the Vietnamese cynomolgus macaque population. CONCLUSION: The insights into the MHC and KIR haplotype organizations and the level of diversity may refine the selection of animals with specific genetic markers for future medical research.
Subject(s)
COVID-19 , Humans , Animals , Major Histocompatibility Complex/genetics , Receptors, KIR/genetics , Macaca , GenomicsABSTRACT
Expectations play important roles in consumers' purchase decisions. Among many types of expectations, consumers often form expectations on future market conditions when purchasing goods or services. This study develops a multiple-selves intertemporal choice model for such expectation-based purchase decisions, incorporating behavioral factors such as present-biased preferences into the model. An analysis based on the model shows that consumers adopt a threshold perception-perfect strategy when making purchase decisions and the threshold depends on values of model parameters that capture expectations on key market conditions. Different consumers often have different parameter values, leading to heterogeneous behavior. The study further applies the model to explain observations from medical service consumption data during the COVID-19 pandemic, and shows that the expectation-based purchase model provides a sound explanation for the observed heterogeneous purchase decisions across individuals with different incomes and health insurance status. Supplementary Information: The online version contains supplementary material available at 10.1007/s11002-022-09650-7.
ABSTRACT
BackgroundThe outbreak of Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection has become a global health emergency. We aim to decipher SARS-CoV-2 infected cell types, the consequent host immune response and their interplay in the lung of COVID-19 patients.MethodsWe analyzed single-cell RNA sequencing (scRNA-seq) data of bronchoalveolar lavage fluid (BALF) samples from 10 healthy donors, 6 severe COVID-19 patients and 3 mild recovered patients. The expressions of SARS-CoV-2 receptors (ACE2 and TMPRSS2) were examined among different cell types. The immune cells infiltration patterns, their expression profiles, and interplays between immune cells and SARS-CoV-2 target cells were further investigated.ResultsCompared to healthy controls, ACE2 and TMPRSS2 expressions were significantly higher in lung epithelial cells of COVID-19 patients, in particular club and ciliated cells. SARS-CoV-2 activated pro-inflammatory genes and interferon/cytokine signaling in these cells. In severe COVID-19 patients, significantly higher neutrophil, but lower macrophage in the lung was observed along with markedly increased cytokines expression compared with healthy controls and mild patients. By contrast, neutrophil and macrophage returned to normal level whilst more T and NK cells accumulation were observed in mild patients. Moreover, SARS-CoV-2 infection altered the community interplays of lung epithelial and immune cells: interactions between the club and immune cells were higher in COVID-19 patients compared to healthy donors;on the other hand, immune-immune cells interactions appeared the strongest in mild patients.ConclusionsSARS-CoV-2 could infect lung epithelium, alter communication patterns between lung epithelial cells and immune system, and drive dysregulated host immune response in COVID-19 patients.
ABSTRACT
BACKGROUND: The outbreak of Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection has become a global health emergency. We aim to decipher SARS-CoV-2 infected cell types, the consequent host immune response and their interplay in lung of COVID-19 patients. METHODS: We analyzed single-cell RNA sequencing (scRNA-seq) data of bronchoalveolar lavage fluid (BALF) samples from 10 healthy donors, 6 severe COVID-19 patients and 3 mild recovered patients. The expressions of SARS-CoV-2 receptors (ACE2 and TMPRSS2) were examined among different cell types. The immune cells infiltration patterns, their expression profiles, and interplays between immune cells and SARS-CoV-2 target cells were further investigated. FINDINGS: Compared to healthy controls, ACE2 and TMPRSS2 expressions were significantly higher in lung epithelial cells of COVID-19 patients, in particular club and ciliated cells. SARS-CoV-2 activated pro-inflammatory genes and interferon/cytokine signaling in these cells. In severe COVID-19 patients, significantly higher neutrophil, but lower macrophage in lung was observed along with markedly increased cytokines expression compared with healthy controls and mild patients. By contrast, neutrophil and macrophage returned to normal level whilst more T and NK cells accumulation were observed in mild patients. Moreover, SARS-CoV-2 infection altered the community interplays of lung epithelial and immune cells: interactions between the club and immune cells were higher in COVID-19 patients compared to healthy donors; on the other hand, immune-immune cells interactions appeared the strongest in mild patients. INTERPRETATION: SARS-CoV-2 could infect lung epithelium, alter communication patterns between lung epithelial cells and immune system, and drive dysregulated host immune response in COVID-19 patients. FUNDING: This project was supported by National Key R&D Program of China (No. 2018YFC1315000/2018YFC1315004), Science and Technology Program Grant Shenzhen (JCYJ20170413161534162), HMRF Hong Kong (17160862), RGC-CRF Hong Kong (C4039-19G), RGC-GRF Hong Kong (14163817), Vice-Chancellor's Discretionary Fund CUHK and CUHK direct grant, Shenzhen Virtual University Park Support Scheme to CUHK Shenzhen Research Institute.