Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Environmental Research ; 212:113297, 2022.
Article in English | ScienceDirect | ID: covidwho-1796872

ABSTRACT

Meteorological factors have been confirmed to affect the COVID-19 transmission, but current studied conclusions varied greatly. The underlying causes of the variance remain unclear. Here, we proposed two scientific questions: (1) whether meteorological factors have a consistent influence on virus transmission after combining all the data from the studies;(2) whether the impact of meteorological factors on the COVID-19 transmission can be influenced by season, geospatial scale and latitude. We employed a meta-analysis to address these two questions using results from 2813 published articles. Our results showed that, the influence of meteorological factors on the newly-confirmed COVID-19 cases varied greatly among existing studies, and no consistent conclusion can be drawn. After grouping outbreak time into cold and warm seasons, we found daily maximum and daily minimum temperatures have significant positive influences on the newly-confirmed COVID-19 cases in cold season, while significant negative influences in warm season. After dividing the scope of the outbreak into national and urban scales, relative humidity significantly inhibited the COVID-19 transmission at the national scale, but no effect on the urban scale. The negative impact of relative humidity, and the positive impacts of maximum temperatures and wind speed on the newly-confirmed COVID-19 cases increased with latitude. The relationship of maximum and minimum temperatures with the newly-confirmed COVID-19 cases were more susceptible to season, while relative humidity's relationship was more affected by latitude and geospatial scale. Our results suggested that relationship between meteorological factors and the COVID-19 transmission can be affected by season, geospatial scale and latitude. A rise in temperature would promote virus transmission in cold seasons. We suggested that the formulation and implementation of epidemic prevention and control should mainly refer to studies at the urban scale. The control measures should be developed according to local meteorological properties for individual city.

2.
IEEE J Biomed Health Inform ; 26(3): 1080-1090, 2022 03.
Article in English | MEDLINE | ID: covidwho-1759116

ABSTRACT

Pneumonia is one of the most common treatable causes of death, and early diagnosis allows for early intervention. Automated diagnosis of pneumonia can therefore improve outcomes. However, it is challenging to develop high-performance deep learning models due to the lack of well-annotated data for training. This paper proposes a novel method, called Deep Supervised Domain Adaptation (DSDA), to automatically diagnose pneumonia from chest X-ray images. Specifically, we propose to transfer the knowledge from a publicly available large-scale source dataset (ChestX-ray14) to a well-annotated but small-scale target dataset (the TTSH dataset). DSDA aligns the distributions of the source domain and the target domain according to the underlying semantics of the training samples. It includes two task-specific sub-networks for the source domain and the target domain, respectively. These two sub-networks share the feature extraction layers and are trained in an end-to-end manner. Unlike most existing domain adaptation approaches that perform the same tasks in the source domain and the target domain, we attempt to transfer the knowledge from a multi-label classification task in the source domain to a binary classification task in the target domain. To evaluate the effectiveness of our method, we compare it with several existing peer methods. The experimental results show that our method can achieve promising performance for automated pneumonia diagnosis.


Subject(s)
Deep Learning , Pneumonia , Early Diagnosis , Humans , Pneumonia/diagnostic imaging , Tomography, X-Ray Computed/methods , X-Rays
4.
Eur J Med Res ; 27(1): 26, 2022 Feb 22.
Article in English | MEDLINE | ID: covidwho-1704356

ABSTRACT

OBJECTIVE: To determine the effect of polymorphisms and mutations in angiotensin-converting enzyme 2 (ACE2) and Type 2 transmembrane serine proteases (TMPRSS2) genes on susceptibility to corona virus disease 2019 (COVID-19) and patient prognosis. INTRODUCTION: From December 2019 to the current time, an outbreak of epidemic of COVID-19, characterized by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has occurred around the world. It is now clear that SARS-CoV-2 binds to human ACE2 receptors, with expression of these receptors correlated with the rate of SARS-CoV-2 infection and mortality. Polymorphisms in individual patient factors, such as ACE2 and TMPRSS2 genes have been linked with an increase in negative outcomes, although evidence to affirm remains debatable. METHODS: Here, we performed a systematic review, based on guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria, with the aim of assessing whether polymorphisms in ACE2 and TMPRSS2 genes affect the COVID-19 condition. We extensively searched PubMed, MEDLINE, Embase, the Cochrane Library, and Web of Science databases, for relevant articles and reports published in English between December 2019 and December 2021. RESULTS: A total of 495 full-text articles were downloaded, of which 185 were excluded after preliminary examination as they were duplicates. Finally, 310 articles were evaluated, by reading their titles and abstracts, and 208 of them eliminated based on our selection criteria. Finally, 33 articles met our inclusion criteria and were included in the final assessment. Genetic data from 33,923 patients with COVID-19 drawn from the general population and deriving from over 160 regions and 50 countries, as well as approximately 560,000 samples from global-public genetic databases, were included in our analysis. Ultimately, we identified 10 SNPs and 21 mutations in the ACE2 gene, along with 13 SNPs and 12 variants in the TMPRSS2 gene, which may be associated with COVID-19. CONCLUSIONS: ACE2 and TMPRSS2 play vital roles in the onset, development, and prognosis of SARS-CoV-2 infection, and have both been strongly associated with vulnerability, intensity, and the clinical result of COVID-19. Overall, these genetic factors may have potential for future development of personalized drugs and vaccines against COVID-19. TRIAL REGISTRATION: CRD42021239400 in PROSPERO 2021.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Mutation , Polymorphism, Single Nucleotide , SARS-CoV-2 , Serine Endopeptidases/genetics , Angiotensin-Converting Enzyme 2/physiology , COVID-19/etiology , Genetic Predisposition to Disease , Humans , Serine Endopeptidases/physiology
5.
Front Microbiol ; 12: 801946, 2021.
Article in English | MEDLINE | ID: covidwho-1690426

ABSTRACT

China implemented stringent non-pharmaceutical interventions (NPIs) in spring 2020, which has effectively suppressed SARS-CoV-2. In this study, we utilized data from routine respiratory virus testing requests from physicians and examined circulation of 11 other respiratory viruses in Southern China, from January 1, 2018 to December 31, 2020. A total of 58,169 throat swabs from patients with acute respiratory tract infections (ARTIs) were collected and tested. We found that while the overall activity of respiratory viruses was lower during the period with stringent NPIs, virus activity rebounded shortly after the NPIs were relaxed and social activities resumed. Only influenza was effectively suppressed with very low circulation which extended to the end of 2020. Circulation of other respiratory viruses in the community was maintained even during the period of stringent interventions, especially for rhinovirus. Our study shows that NPIs against COVID-19 have different impacts on respiratory viruses.

6.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-315599

ABSTRACT

Background: Intravenous immunoglobulin (IVIG) is commonly used to treat severe COVID-19, although the clinical outcomes remain unclear. This study evaluated the effectiveness of IVIG treatment for severe COVID-19. Methods: : This retrospective multi-center study evaluated 28-day mortality and time for SARS-CoV-2 RNA clearance in severe COVID-19 patients with or without IVIG treatment. Propensity score matching was used to control confounding factors. Logistic regression and competing risk analyses were performed. Results: : The study included 850 patients (421 patients received IVIG). No significant differences in 28-day mortality or time for SARS-CoV-2 RNA clearance were observed ( p =0.357 and p =0.123, respectively). High-dose of IVIG treatment (>10 g/day) (n=27) was associated with decreased 28-day mortality (OR: 0.33, 95% CI: 0.14–0.77;p =0.011). The IVIG group had prolonged median hospitalization, less shock, and higher incidences of acute respiratory distress syndrome, myocardial injury. Furthermore, IVIG-treated patients were more likely to require non-invasive mechanical ventilation and less likely to require invasive mechanical ventilation. Conclusions: : IVIG treatment for severe COVID-19 patients was not associated with significant improvements in 28-day mortality or time for SARS-CoV-2 RNA clearance. However, some improvements in 28-day survival were observed for high-dose IVIG treatment (>10 g/day).

7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-315389

ABSTRACT

Background: Respiratory tract infections (RTIs) is the highest prevalent disease and southern china has a wide spectrum of respiratory pathogen. The aim of this work was to renew the epidemiology characteristics of respiratory pathogens found in children and adults with RTIs from 2018 to 2020 in southern China. Methods: : In this work, a total of 134,552 nasopharyngeal or throat swabs (patients from 407 hospitals) were analyzed, and fourteen respiratory viruses (Influenza A virus, influenza B virus, parainfluenza viruses, respiratory syncytial virus, adenovirus, human rhinovirus, human metapneumovirus, human Coronavirus, human bocavirus, enterovirus, cytomegalovirus, herpes simplex virus, mycoplasma pneumoniae and chlamydia pneumoniae) were detected using PCR/RT-PCR. Result: The most common respiratory pathogens in southern china were ADV (16.19%), RSV (15.48%), RHV (11.51%), IAV (10.93%), MP (8.95%), EBV (8.70%), PIV (7.67%), IBV (5.44%), with IAV and ADV as the most prevalent pathogens in adults (11.68%) and children (17.10%) respectively. In detail, ADV (16.30%) and RSV (18.93%) are most common in 0-4 years old, with IAV (16.68%), ADV (20.36%) in 5-14 years old, with EBV (7.48%, 8.74%), IAV (15.43, 9.76%) in 15-49y, 50-64y and IAV (7.37%), IBV (2.43%) in 65-105y. Over three years witnessed an increase in PDR of PIV in 0-4y, 5-14y and 65-105y, and RHV in 5-14y and 15-49y. In month distribution, the positive detection rate of pathogens in adults were generally lower than that in children except for EBV and majority of pathogens has shown a sharp decline in 2020. In Upper RTIs, 77.27% (17/ 22) of co-infected patients had infection to ADV, with poly-infection to ADV and RHV the highest (8/22). In Lower RTIs, the ADV infected patients showed that its co-infection rate to MP, PIV, RHV or RSV were 19.51% (48/246), 15.45% (38/246), 14.63% (36/246) and 14.63% (36/246) respectively. Only IAV, IBV and EBV were detected in co-infection patients with lower RTIs. Conclusion: IAV and ADV were the most important respiratory pathogen in adults and children respectively in southern Chin and cross-reactivity might exist between ADV, RHV, PIV and MP. These should be taken into consideration when they formulate the strategies for co-infection avoidance in patients.

8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-315257

ABSTRACT

SARS-CoV-2 unprecedentedly threatens the public health at worldwide level. There is an urgent need to develop an effective vaccine within a highly accelerated time. Here, we present the most comprehensive S-protein-based linear B-cell epitope candidate list by combining epitopes predicted by eight widely-used immune-informatics methods with the epitopes curated from literature published between Feb 6, 2020 and July 10, 2020. We find four top prioritized linear B-cell epitopes in the hotspot regions of S protein can specifically bind with pooled serum antibodies from horses, mice, and monkeys inoculated with different SARS-CoV-2 vaccine candidates or five patients recovering from COVID-19. The four linear B-cell epitopes can induce neutralizing antibodies against both pseudo and live SARS-CoV-2 virus in immunized wild-type BALB/c mice. This study suggests that the four linear B-cell epitopes are potentially important candidates for serological assay or vaccine development.

9.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-307410

ABSTRACT

We study risk taking in a panel of subjects in Wuhan, China - before, during the COVID-19 crisis, and after the country reopened. Subjects in our sample traveled for semester break in January, generating variation in exposure to the virus and quarantine in Wuhan. Higher exposure leads subjects to reduce planned risk taking, risky investments, and optimism. Our findings help unify existing studies by showing that aggregate shocks affect general preferences for risk and economic expectations, while heterogeneity in experience further affect risk taking through beliefs about individuals’ own outcomes such as luck and sense of control.

10.
J Gene Med ; : e3415, 2022 Feb 07.
Article in English | MEDLINE | ID: covidwho-1669502

ABSTRACT

Gene therapy has emerged as a promising tool for treating different intractable diseases, particularly cancer or even viral diseases such as COVID-19 (coronavirus disease 2019). In this context, various non-viral gene carriers are being explored to transfer DNA or RNA sequences into target cells. Here, we review the applications of the naturally occurring amino acid histidine in the delivery of nucleic acids into cells. The biocompatibility of histidine-enhanced gene delivery systems has encouraged their wider use in gene therapy. Histidine-based gene carriers can involve the modification of peptides, dendrimers, lipids or nanocomposites. Several linear polymers, such as polyethylenimine, poly-l-lysine (synthetic) or dextran and chitosan (natural), have been conjugated with histidine residues to form complexes with nucleic acids for intracellular delivery. The challenges, opportunities and future research trends of histidine-based gene deliveries are investigated.

11.
J Thorac Dis ; 13(12): 6866-6875, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1623786

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic is still raging worldwide. Efficient, fast and low-cost severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid detection methods are urgently needed. Methods: A rapid PCR temperature change mode was explored by moving the reaction tube between the independent temperature modules with large temperature differences and a portable ultra-fast real-time PCR instrument were developed. We established a rapid SARS-CoV-2 test method using the ultra-fast real-time PCR instrument, a China Food and Drug Administration-certified SARS-CoV-2 reagent and optimized reaction condition. The analytical and clinical performances of the rapid tests were evaluated by comparing with the standard SARS-CoV-2 tests. Results: The new temperature change mode can effectively shorten the amplification reaction time and be successfully used in the development of the ultra-fast real-time PCR instrument. The rapid SARS-CoV-2 test method was established and the time to yield results were greatly shortened from 81 min of the standard test to 31 min. Specificity of the rapid test was assessed and no non-specific amplification (0/63) was observed. The limits of detection of the rapid and standard tests were similar. Clinical performance was evaluated using 184 respiratory specimens from patients with suspected SARS-CoV-2 infection. The positive agreement between the rapid and standard tests was 100% (67/67), the negative agreement was 97.4% (114/117), and the kappa statistic was 0.965 (P<0.001). No significant differences in the Ct values for each target gene were observed between the rapid test and the standard test (P>0.05). Conclusions: We had developed a 30-minute detection method for SARS-CoV-2 nucleic acid using a novel ultra-fast real-time PCR instrument. The rapid test method may impact on patient management.

12.
J Cardiovasc Transl Res ; 15(1): 38-48, 2022 02.
Article in English | MEDLINE | ID: covidwho-1594479

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is required for the cellular entry of the severe acute respiratory syndrome coronavirus 2. ACE2, via the Ang-(1-7)-Mas-R axis, is part of the antihypertensive and cardioprotective effects of the renin-angiotensin system. We studied hospitalized COVID-19 patients with hypertension and hypertensive human(h) ACE2 transgenic mice to determine the outcome of COVID-19 with or without AT1 receptor (AT1R) blocker treatment. The severity of the illness and the levels of serum cardiac biomarkers (CK, CK-BM, cTnI), as well as the inflammation markers (IL-1, IL-6, CRP), were lesser in hypertensive COVID-19 patients treated with AT1R blockers than those treated with other antihypertensive drugs. Hypertensive hACE2 transgenic mice, pretreated with AT1R blocker, had increased ACE2 expression and SARS-CoV-2 in the kidney and heart, 1 day post-infection. We conclude that those hypertensive patients treated with AT1R blocker may be at higher risk for SARS-CoV-2 infection. However, AT1R blockers had no effect on the severity of the illness but instead may have protected COVID-19 patients from heart injury, via the ACE2-angiotensin1-7-Mas receptor axis.


Subject(s)
COVID-19 , Hypertension , Animals , Humans , Hypertension/complications , Hypertension/drug therapy , Inpatients , Mice , Mice, Transgenic , Renin-Angiotensin System , SARS-CoV-2 , Virulence
13.
World J Emerg Med ; 12(4): 293-298, 2021.
Article in English | MEDLINE | ID: covidwho-1579976

ABSTRACT

BACKGROUND: The study aims to illustrate the clinical characteristics and development of septic shock in intensive care unit (ICU) patients confirmed with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and to perform a comprehensive analysis of the association between septic shock and clinical outcomes in critically ill patients with coronavirus disease (COVID-19). METHODS: Patients confirmed with SARS-CoV-2 infection, who were admitted to the ICU of the Third People's Hospital of Shenzhen from January 1 to February 7, 2020, were enrolled. Clinical characteristics and outcomes were compared between patients with and without septic shock. RESULTS: In this study, 35 critically ill patients with COVID-19 were included. Among them, the median age was 64 years (interquartile range [IQR] 59-67 years), and 10 (28.4%) patients were female. The median ICU length of stay was 16 days (IQR 8-23 days). Three (8.6%) patients died during hospitalization. Nine (25.7%) patients developed septic shock in the ICU, and these patients had a significantly higher incidence of organ dysfunction and a worse prognosis than patients without septic shock. CONCLUSIONS: Septic shock is associated with a poor outcome in critically ill COVID-19 patients and is one of the hallmarks of the severity of patients receiving ICU care. A dysregulated immune response, uncontrolled inflammation, and coagulation disorders are strongly associated with the development and progression of COVID-19-related septic shock.

14.
Clin Chim Acta ; 525: 46-53, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1559179

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has caused a global pandemic beginning in 2020, can be detected by reverse-transcription polymerase chain reaction (RT-PCR). However, owing to the urgent need for a large number of detection kits, the time spent researching and developing these kits has been shortened during the pandemic, and the kits that are being used commercially have not undergone full and independent evaluation. To ensure the accuracy of SARS-CoV-2 test results, performance verification of commercial Real-Time quantitative PCR (RT-qPCR) kits is required. METHODS: The performance of five commercial RT-qPCR diagnostic kits for SARS-CoV-2 used in China was evaluated using a coronavirus disease 2019 (COVID-19) RNA liquid performance verification reference product-manufactured by Guangzhou Bondson (BDS) Biotechnology Co., Ltd.,Guangzhou, China-that uses droplet digital RT-PCR technology combined with fluorescence quantitative PCR. The five kits of Novel Coronavirus 2019-nCoV nucleic acid detection kit (RT-qPCR method) evaluated were Da An (Da An Gene Co., Ltd. of Sun Yat-sen University), Liferiver (Shanghai ZJ Bio-Tech Co., Ltd.), Kinghawk (Beijing Kinghawk Pharmaceutical Co., Ltd.), eDiagnosis (Wuhan Easy Diagnosis Biomedicine Co., Ltd.), and Maccura (Maccura Biotechnology Co., Ltd.). Performance verification criteria included the coincidence rate, limit of detection (LoD), cross-reactivity, precision, and anti-interference. Finally, through the BDS performance verification reference product kit, clinical samples are used to verify its clinical diagnostic efficacy. RESULTS: The coincidence rate was 100% for all kits except for Kinghawk, which was 95%. The LoD for Da An, eDiagnosis and Maccura was 250copies/mL, and it was 1000 copies/ml for Liferiver. Kinghawk was not able to detect its advertised LoD of 500 copies/ml. The cross-reactivity test results were all negative. Moreover, all kits had a coefficient of variation less than 5%; however, Liferiver showed the best precision. Da An, Liferiver, and eDiagnosis showed higher sensitivity to the nucleocapsid (N) gene than they did to the open reading frame (ORF) 1ab genes. Anti-interference results for all five kits were positive. The results of clinical diagnostic efficacy were that the specificity of the four kits was 1.000 (0.877-1.000), the sensitivity of Da An was 1.000 (0.850-1.000), Liferiver was 0.964 (0.798-0.998), Maccura was 0.893 (0.706-0.972), and eDiagnosis was 0.857 (0.664-0.953). CONCLUSIONS: All commercial RT-qPCR diagnostic kits for SARS-CoV-2 passed the BDS performance verification, except for Kinghawk (batch No:20200608113) which failed to detect the LoD of 500 copies/mL. Da An and Liferiver have excellent clinical diagnostic specificity and sensitivity. This study can provide guidance for the selection or optimization of RT-qPCR diagnostic test kits for SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , China , Humans , Pandemics , RNA, Viral/genetics , Reagent Kits, Diagnostic , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
15.
Signal Transduct Target Ther ; 6(1): 414, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1556321

ABSTRACT

Azvudine (FNC) is a nucleoside analog that inhibits HIV-1 RNA-dependent RNA polymerase (RdRp). Recently, we discovered FNC an agent against SARS-CoV-2, and have taken it into Phase III trial for COVID-19 patients. FNC monophosphate analog inhibited SARS-CoV-2 and HCoV-OC43 coronavirus with an EC50 between 1.2 and 4.3 µM, depending on viruses or cells, and selective index (SI) in 15-83 range. Oral administration of FNC in rats revealed a substantial thymus-homing feature, with FNC triphosphate (the active form) concentrated in the thymus and peripheral blood mononuclear cells (PBMC). Treating SARS-CoV-2 infected rhesus macaques with FNC (0.07 mg/kg, qd, orally) reduced viral load, recuperated the thymus, improved lymphocyte profiles, alleviated inflammation and organ damage, and lessened ground-glass opacities in chest X-ray. Single-cell sequencing suggested the promotion of thymus function by FNC. A randomized, single-arm clinical trial of FNC on compassionate use (n = 31) showed that oral FNC (5 mg, qd) cured all COVID-19 patients, with 100% viral ribonucleic acid negative conversion in 3.29 ± 2.22 days (range: 1-9 days) and 100% hospital discharge rate in 9.00 ± 4.93 days (range: 2-25 days). The side-effect of FNC is minor and transient dizziness and nausea in 16.12% (5/31) patients. Thus, FNC might cure COVID-19 through its anti-SARS-CoV-2 activity concentrated in the thymus, followed by promoted immunity.


Subject(s)
Antiviral Agents/administration & dosage , Azides/administration & dosage , COVID-19/drug therapy , Deoxycytidine/analogs & derivatives , SARS-CoV-2/metabolism , Thymus Gland , Adult , Aged , Aged, 80 and over , Animals , Coronavirus OC43, Human/metabolism , Deoxycytidine/administration & dosage , Female , Humans , Male , Middle Aged , Rats , Thymus Gland/metabolism , Thymus Gland/virology
16.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296424

ABSTRACT

Pathogenic mitochondrial (mt)DNA molecules can exhibit heteroplasmy in single cells and cause a range of clinical phenotypes, although their contribution to immunity is poorly understood. Here, in mice carrying heteroplasmic C5024T in mt-tRNA Ala – that impairs oxidative phosphorylation – we found a reduced mutation burden in peripheral T and B memory lymphocyte subsets, compared to their naïve counterparts. Furthermore, selection diluting the mutation was induced in vitro by triggering T and B cell antigen receptors. While C5024T dysregulated naïve CD8 + T cell respiration and metabolic remodeling post-activation, these phenotypes were partially ameliorated by selection. Analogous to mice, peripheral blood memory T and B lymphocyte subsets from human MELAS (Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episodes) patients – carrying heteroplasmic A3243G in mt-tRNA Leu – displayed a reduced mutation burden, compared to naïve cells. In both humans and mice, mtDNA selection was observed in IgG + antigen-specific B cells after SARS-CoV-2 Spike vaccination, illustrating an on-going process in vivo . Taken together, these data illustrate purifying selection of pathogenic mtDNA variants during the oxidative phosphorylation checkpoints of the naïve-memory lymphocyte transition. Highlights In human MELAS patients (A3243G in mt-tRNA Leu ) and a related mouse model (C5024T in mt-tRNA Ala ), T and B memory subsets displayed a reduced mtDNA mutation burden compared to their naïve counterparts. Selection was observed in antigen-specific IgG + B cells after SARS-CoV-2 Spike protein vaccination. T and B cell antigen receptor stimulation triggered purifying selection in vitro , facilitating mechanistic studies of mtDNA selection. Heteroplasmic pathogenic mutations in mtDNA dysregulated metabolic remodeling after lymphocyte activation and reduced macrophage OXPHOS capacity.

17.
Virology ; 566: 56-59, 2022 01.
Article in English | MEDLINE | ID: covidwho-1550137

ABSTRACT

BACKGROUND: Recombinant protein subunit vaccination is considered to be a safe, fast and reliable technique when combating emerging and re-emerging diseases such as coronavirus disease 2019 (COVID-19). Typically, such subunit vaccines require the addition of adjuvants to attain adequate immunogenicity. AS01, which contains adjuvants MPL and saponin QS21, is a liposome-based vaccine adjuvant system that is one of the leading candidates. However, the adjuvant effect of AS01 in COVID-19 vaccines is not well described yet. METHODS: In this study, we utilized a mixture of AS01 as the adjuvant for an S1 protein-based COVID-19 vaccine. RESULTS: The adjuvanted vaccine induced robust immunoglobulin G (IgG) binding antibody and virus-neutralizing antibody responses. Importantly, two doses induced similar levels of IgG binding antibody and neutralizing antibody responses compared with three doses and the antibody responses weakened only slightly over time up to six weeks after immunization. CONCLUSION: These results suggested that two doses may be enough for a clinical vaccine strategy design using MPL & QS21 adjuvanted recombinant protein, especially in consideration of the limited production capacity of COVID-19 vaccine in a public health emergency.


Subject(s)
Antigens, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Lipid A/analogs & derivatives , SARS-CoV-2/immunology , Saponins/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing , Antibodies, Viral/metabolism , Antibody Formation , COVID-19/virology , Dose-Response Relationship, Immunologic , Drug Combinations , Female , HEK293 Cells , Humans , Immunization , Immunogenicity, Vaccine , Lipid A/administration & dosage , Lipid A/immunology , Mice, Inbred BALB C , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , Saponins/administration & dosage
18.
World J Clin Cases ; 9(28): 8388-8403, 2021 Oct 06.
Article in English | MEDLINE | ID: covidwho-1513223

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) pandemic is a global threat caused by the severe acute respiratory syndrome coronavirus-2. AIM: To develop and validate a risk stratification tool for the early prediction of intensive care unit (ICU) admission among COVID-19 patients at hospital admission. METHODS: The training cohort included COVID-19 patients admitted to the Wuhan Third Hospital. We selected 13 of 65 baseline laboratory results to assess ICU admission risk, which were used to develop a risk prediction model with the random forest (RF) algorithm. A nomogram for the logistic regression model was built based on six selected variables. The predicted models were carefully calibrated, and the predictive performance was evaluated and compared with two previously published models. RESULTS: There were 681 and 296 patients in the training and validation cohorts, respectively. The patients in the training cohort were older than those in the validation cohort (median age: 63.0 vs 49.0 years, P < 0.001), and the percentages of male gender were similar (49.6% vs 49.3%, P = 0.958). The top predictors selected in the RF model were neutrophil-to-lymphocyte ratio, age, lactate dehydrogenase, C-reactive protein, creatinine, D-dimer, albumin, procalcitonin, glucose, platelet, total bilirubin, lactate and creatine kinase. The accuracy, sensitivity and specificity for the RF model were 91%, 88% and 93%, respectively, higher than those for the logistic regression model. The area under the receiver operating characteristic curve of our model was much better than those of two other published methods (0.90 vs 0.82 and 0.75). Model A underestimated risk of ICU admission in patients with a predicted risk less than 30%, whereas the RF risk score demonstrated excellent ability to categorize patients into different risk strata. Our predictive model provided a larger standardized net benefit across the major high-risk range compared with model A. CONCLUSION: Our model can identify ICU admission risk in COVID-19 patients at admission, who can then receive prompt care, thus improving medical resource allocation.

19.
Genomics and Applied Biology ; 39(6):2897-2901, 2020.
Article in Chinese | GIM | ID: covidwho-1497985

ABSTRACT

The purpose of this study is to provide a systematic theoretical basis and technical support for the effective diagnosis and effective surveillance of Post COVID-19 epidemic. We systematically reviewed the development of the epidemic, collected data, and analyzed the medical imaging diagnostic methods and molecular detection techniques for clinical diagnosis of COVID-19 infected patients and the experience gained in clinical practice since the outbreak of the epidemic. Studies have shown that clinical suspected cases should be comprehensively analyzed in combination with clinical characteristics such as epidemiological contact history and imaging findings, and viral nucleic acid testing should be performed on respiratory or blood samples of suspected cases infected with new coronavirus(SARS-CoV-2). In clinical practice, patients with suspected COVID-19 pneumonia do not exclude the possibility of false negative test results. Real-time fluorescent RT-PCR is required to detect viral nucleic acid positive in order to fully confirm the diagnosis.

20.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1186: 123015, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1487818

ABSTRACT

The potential of lipid nanoparticles (LNPs) as nucleic acid delivery vehicles has been demonstrated in recent years, culminating in the emergency use approval of LNP-based mRNA SARS-CoV-2 vaccines in late 2020. The determination of RNA content relative to LNP size can be important to the understanding of efficacy and adverse effects. This work presents the first description of a facile and rapid analytical method for online, size-dependent RNA payload distribution measurement using data from multi-angle light scattering, ultraviolet and refractive index detectors following separation of the LNPs by size-exclusion chromatography. The analysis was validated by size-based fractionation of the LNPs with subsequent offline analysis of the fractions. Four LNPs formulated with different PEG-lipids and different lipid compositions were tested. Good agreement was observed between the online and offline size-based RNA distributions among all four LNPs, demonstrating the utility of the online method for LNP-encapsulated RNA in general, and suggesting a means for simplified biophysical quantitation of a dosing-related critical quality attribute.


Subject(s)
COVID-19 Vaccines/chemistry , Chromatography, Gel/methods , Drug Carriers/chemistry , Nanoparticles/chemistry , RNA, Messenger/chemistry , RNA, Viral/chemistry , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Vaccines/immunology , Drug Delivery Systems , Humans , Lipids/chemistry , Particle Size , RNA, Messenger/immunology , RNA, Viral/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL