Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296795

ABSTRACT

The outbreak of SARS-CoV-2 continues to pose a serious threat to human health and social and economic stability. In this study, we established an anti-coronavirus drug screening platform based on the Homogeneous Time Resolved Fluorescence (HTRF) technology and the interaction between the coronavirus S protein and its host receptor ACE2. This platform is a rapid, sensitive, specific, and high throughput system. With this platform, we screened two compound libraries of 2,864 molecules and identified three potential anti-coronavirus compounds: tannic acid (TA), TS-1276 (anthraquinone), and TS-984 (9-Methoxycanthin-6-one). Our in vitro validation experiments indicated that TS-984 strongly inhibits the interaction of the coronavirus S-protein and the human cell ACE2 receptor. This data suggests that TS-984 is a potent blocker of the interaction between the S-protein and ACE2, which might have the potential to be developed into an effective anti-coronavirus drug.

2.
Nat Commun ; 12(1): 3061, 2021 05 24.
Article in English | MEDLINE | ID: covidwho-1387342

ABSTRACT

The SARS-CoV-2 pandemic has triggered global efforts to develop therapeutics. The main protease of SARS-CoV-2 (Mpro), critical for viral replication, is a key target for therapeutic development. An organoselenium drug called ebselen has been demonstrated to have potent Mpro inhibition and antiviral activity. We have examined the binding modes of ebselen and its derivative in Mpro via high resolution co-crystallography and investigated their chemical reactivity via mass spectrometry. Stronger Mpro inhibition than ebselen and potent ability to rescue infected cells were observed for a number of derivatives. A free selenium atom bound with cysteine of catalytic dyad has been revealed in crystallographic structures of Mpro with ebselen and MR6-31-2 suggesting hydrolysis of the enzyme bound organoselenium covalent adduct and formation of a phenolic by-product, confirmed by mass spectrometry. The target engagement with selenation mechanism of inhibition suggests wider therapeutic applications of these compounds against SARS-CoV-2 and other zoonotic beta-corona viruses.


Subject(s)
Azoles/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Organoselenium Compounds/pharmacology , SARS-CoV-2/enzymology , Antiviral Agents/pharmacology , Azoles/chemistry , Catalytic Domain , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Cysteine/chemistry , Hydrolysis , Isoindoles , Models, Molecular , Organoselenium Compounds/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Reference Standards , SARS-CoV-2/drug effects , Salicylanilides/chemistry , Salicylanilides/pharmacology , Selenium/metabolism
3.
Nat Commun ; 12(1): 141, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-1387322

ABSTRACT

Coronaviruses spike (S) glycoproteins mediate viral entry into host cells by binding to host receptors. However, how the S1 subunit undergoes conformational changes for receptor recognition has not been elucidated in Alphacoronavirus. Here, we report the cryo-EM structures of the HCoV-229E S trimer in prefusion state with two conformations. The activated conformation may pose the potential exposure of the S1-RBDs by decreasing of the interaction area between the S1-RBDs and the surrounding S1-NTDs and S1-RBDs compared to the closed conformation. Furthermore, structural comparison of our structures with the previously reported HCoV-229E S structure showed that the S trimers trended to open the S2 subunit from the closed conformation to open conformation, which could promote the transition from pre- to postfusion. Our results provide insights into the mechanisms involved in S glycoprotein-mediated Alphacoronavirus entry and have implications for vaccine and therapeutic antibody design.


Subject(s)
CD13 Antigens/metabolism , Coronavirus 229E, Human/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Cell Line, Tumor , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cryoelectron Microscopy , Humans , Models, Molecular , Protein Conformation, alpha-Helical , Protein Multimerization , Protein Structure, Quaternary , Protein Subunits/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure
4.
Cell ; 182(2): 417-428.e13, 2020 07 23.
Article in English | MEDLINE | ID: covidwho-342735

ABSTRACT

Nucleotide analog inhibitors, including broad-spectrum remdesivir and favipiravir, have shown promise in in vitro assays and some clinical studies for COVID-19 treatment, this despite an incomplete mechanistic understanding of the viral RNA-dependent RNA polymerase nsp12 drug interactions. Here, we examine the molecular basis of SARS-CoV-2 RNA replication by determining the cryo-EM structures of the stalled pre- and post- translocated polymerase complexes. Compared with the apo complex, the structures show notable structural rearrangements happening to nsp12 and its co-factors nsp7 and nsp8 to accommodate the nucleic acid, whereas there are highly conserved residues in nsp12, positioning the template and primer for an in-line attack on the incoming nucleotide. Furthermore, we investigate the inhibition mechanism of the triphosphate metabolite of remdesivir through structural and kinetic analyses. A transition model from the nsp7-nsp8 hexadecameric primase complex to the nsp12-nsp7-nsp8 polymerase complex is also proposed to provide clues for the understanding of the coronavirus transcription and replication machinery.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/enzymology , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/metabolism , Alanine/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Catalytic Domain , Coronavirus RNA-Dependent RNA Polymerase , Cryoelectron Microscopy , Models, Chemical , Models, Molecular , RNA, Viral/metabolism , SARS-CoV-2 , Transcription, Genetic , Virus Replication
5.
Science ; 368(6492): 779-782, 2020 05 15.
Article in English | MEDLINE | ID: covidwho-47347

ABSTRACT

A novel coronavirus [severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)] outbreak has caused a global coronavirus disease 2019 (COVID-19) pandemic, resulting in tens of thousands of infections and thousands of deaths worldwide. The RNA-dependent RNA polymerase [(RdRp), also named nsp12] is the central component of coronaviral replication and transcription machinery, and it appears to be a primary target for the antiviral drug remdesivir. We report the cryo-electron microscopy structure of COVID-19 virus full-length nsp12 in complex with cofactors nsp7 and nsp8 at 2.9-angstrom resolution. In addition to the conserved architecture of the polymerase core of the viral polymerase family, nsp12 possesses a newly identified ß-hairpin domain at its N terminus. A comparative analysis model shows how remdesivir binds to this polymerase. The structure provides a basis for the design of new antiviral therapeutics that target viral RdRp.


Subject(s)
Betacoronavirus/enzymology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/ultrastructure , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/ultrastructure , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/metabolism , Alanine/pharmacology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Catalytic Domain , Coronavirus RNA-Dependent RNA Polymerase , Cryoelectron Microscopy , Drug Design , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Protein Conformation, beta-Strand , Protein Domains , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL