Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Infect Dis ; 2022 Mar 02.
Article in English | MEDLINE | ID: covidwho-1852993

ABSTRACT

BACKGROUND: SARS-CoV-2 can infect human and other mammals, including hamsters. Syrian (Mesocricetus auratus) and dwarf (Phodopus sp.) hamsters are susceptible to SARS-CoV-2 infection in the laboratory setting. However, pet shop-related COVID-19 outbreaks have not been reported. METHODS: We conducted an investigation of a pet shop-related COVID-19 outbreak due to Delta variant AY.127 involving at least three patients in Hong Kong. We tested samples collected from the patients, environment, and hamsters linked to this outbreak and performed whole genome sequencing analysis of the RT-PCR-positive samples. RESULTS: The patients included a pet shop keeper (Patient 1), a female customer of the pet shop (Patient 2), and the husband of Patient 2 (Patient 3). Investigation showed that 17.2% (5/29) and 25.5% (13/51) environmental specimens collected from the pet shop and its related warehouse, respectively, tested positive for SARS-CoV-2 RNA by RT-PCR. Among euthanized hamsters randomly collected from the storehouse, 3% (3/100) tested positive for SARS-CoV-2 RNA by RT-PCR and seropositive for anti-SARS-CoV-2 antibody by ELISA. Whole genome analysis showed that although all genomes from the outbreak belonged to the Delta variant AY.127, there were at least 3 nucleotide differences among the genomes from different patients and the hamster cages. Genomic analysis suggests that multiple strains have emerged within the hamster population, and these different strains have likely transmitted to human either via direct contact or via the environment. CONCLUSIONS: Our study demonstrated probable hamster-to-human transmission of SARS-CoV-2. As pet trading is common around the world, this can represent a route of international spread of this pandemic virus.

2.
Emerg Microbes Infect ; 11(1): 689-698, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1713523

ABSTRACT

During the investigation of a pet shop outbreak of severe acute respiratory coronavirus 2 (SARS-CoV-2) with probable hamster-to-human transmission, the environmental and hamster samples in epidemiologically linked pet shops were found positive for SARS-CoV-2 Delta variant AY.127 strains which are phylogenetically closely related to patients and reported European strains. This interspecies' spill-over has triggered transmission in 58 patients epidemiologically linked to three pet shops. Incidentally, three dwarf hamsters imported from the Netherlands and centralized in a warehouse distributing animals to pet shops were positive for SARS-CoV-2 spike variant phylogenetically related to European B.1.258 strains from March 2020. This B.1.258 strain almost disappeared in July 2021. While no hamster-to-human transmission of B.1.258-like strain was found in this outbreak, molecular docking showed that its spike receptor-binding domain (RBD) has a similar binding energy to human ACE2 compared to that of Delta variant AY.127. Therefore, the potential of this B.1.258-related spike variant for interspecies jumping cannot be ignored. The co-circulation of B.1.258-related spike variants with Delta AY.127, which originated in Europe and was not previously found in Hong Kong, suggested that hamsters in our wholesale warehouse and retail pet shops more likely have acquired these viruses in the Netherlands or stopovers during delivery by aviation than locally. The risk of human-to-hamster reverse zoonosis by multiple SARS-CoV-2 variants leading to further adaptive spike mutations with subsequent transmission back to humans cannot be underestimated as an outbreak source of COVID-19. Testing imported pet animals susceptible to SARS-CoV-2 is warranted to prevent future outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Hong Kong , Humans , Molecular Docking Simulation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
3.
J Virol Methods ; 299: 114333, 2022 01.
Article in English | MEDLINE | ID: covidwho-1525873

ABSTRACT

The increasing prevalence of N501Y variants of SARS-CoV-2 has kindled global concern due to their enhanced transmissibility. Genome sequencing is the gold standard method to identify the emerging variants of concern. But it is time-consuming and expensive, limiting the widespread deployment of genome surveillance in some countries. Health authorities surge the development of alternative assay to expand screening capacity with reduced time and cost. In this study, we developed an in-house TaqMan minor groove binder (MGB) probe-based one-step RT-qPCR assay to detect the presence of N501Y mutation in SARS-CoV-2. A total of 168 SARS-CoV-2 positive respiratory specimens were collected to determine diagnostic accuracy of the RT-qPCR assay. As a reference standard, PANGO lineages and the mutation patterns of all samples were characterised by whole-genome sequencing. The analytical sensitivity and the ability of the assay to detect low frequency of N501Y variants were also evaluated. A total of 31 PANGO lineages were identified from 168 SARS-CoV-2 positive cases, in which 34 samples belonged to N501Y variants, including B.1.1.7 (n = 20), B.1.351 (n = 12) and P.3 (n = 2). The N501Y RT-qPCR correctly identified all 34 samples as N501Y-positive and the other 134 samples as wildtype. The limit-of-detection of the assay consistently achieved 1.5 copies/µL on four different qPCR platforms. N501Y mutation was successfully detected at an allele frequency as low as 10 % in a sample with mixed SARS-CoV-2 lineage. The N501Y RT-qPCR is simple and inexpensive (US$1.6 per sample). It enables robust high-throughput screening for surveillance of SARS-CoV-2 variants of concern harbouring N501Y mutation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Real-Time Polymerase Chain Reaction , Whole Genome Sequencing
4.
Lancet Reg Health West Pac ; 17: 100281, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1446927

ABSTRACT

BACKGROUND: Global dissemination of SARS-CoV-2 Variants of Concern (VOCs) remains a concern. The aim of this study is to describe how mass testing and phylogenetic analysis successfully prevented local transmission of SARS-CoV-2 VOC in a densely populated city with low herd immunity for COVID-19. METHODS: In this descriptive study, we conducted contact tracing, quarantine, and mass testing of the potentially exposed contacts with the index case. Epidemiological investigation and phylogeographic analysis were performed. FINDINGS: Among 11,818 laboratory confirmed cases of COVID-19 diagnosed till 13th May 2021 in Hong Kong, SARS-CoV-2 VOCs were found in 271 (2.3%) cases. Except for 10 locally acquired secondary cases, all SARS-CoV-2 VOCs were imported or acquired in quarantine hotels. The index case of this SARS-CoV-2 VOC B.1.351 epidemic, an inbound traveler with asymptomatic infection, was diagnosed 9 days after completing 21 days of quarantine. Contact tracing of 163 contacts in household, hotel, and residential building only revealed 1 (0.6%) secondary case. A symptomatic foreign domestic helper (FDH) without apparent epidemiological link but infected by virus with identical genome sequence was subsequently confirmed. Mass testing of 0.34 million FDHs identified two more cases which were phylogenetically linked. A total of 10 secondary cases were identified that were related to two household gatherings. The clinical attack rate of household close contact was significantly higher than non-household exposure during quarantine (7/25, 28% vs 0/2051, 0%; p<0.001). INTERPRETATION: The rising epidemic of SARS-CoV-2 VOC transmission could be successfully controlled by contact tracing, quarantine, and rapid genome sequencing complemented by mass testing. FUNDING: Health and Medical Research Fund Commissioned Research on Control of Infectious Disease (see acknowledgments for full list).

SELECTION OF CITATIONS
SEARCH DETAIL