Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Emerg Infect Dis ; 28(9): 1859-1862, 2022 09.
Article in English | MEDLINE | ID: covidwho-1963356

ABSTRACT

Given widespread use of spike antibody in generating coronavirus disease vaccines, SARS-CoV-2 nucleocapsid antibodies are increasingly used to indicate previous infection in serologic surveys. However, longitudinal kinetics and seroreversion are poorly defined. We found substantial seroreversion of nucleocapsid total immunoglobulin, underscoring the need to account for seroreversion in seroepidemiologic studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , Coronavirus Nucleocapsid Proteins/immunology , Humans , Kinetics , Nucleocapsid , Phosphoproteins/immunology , Seroepidemiologic Studies
2.
PLoS Biol ; 20(2): e3001531, 2022 02.
Article in English | MEDLINE | ID: covidwho-1686076

ABSTRACT

Identifying the potential for SARS-CoV-2 reinfection is crucial for understanding possible long-term epidemic dynamics. We analysed longitudinal PCR and serological testing data from a prospective cohort of 4,411 United States employees in 4 states between April 2020 and February 2021. We conducted a multivariable logistic regression investigating the association between baseline serological status and subsequent PCR test result in order to calculate an odds ratio for reinfection. We estimated an odds ratio for reinfection ranging from 0.14 (95% CI: 0.019 to 0.63) to 0.28 (95% CI: 0.05 to 1.1), implying that the presence of SARS-CoV-2 antibodies at baseline is associated with around 72% to 86% reduced odds of a subsequent PCR positive test based on our point estimates. This suggests that primary infection with SARS-CoV-2 provides protection against reinfection in the majority of individuals, at least over a 6-month time period. We also highlight 2 major sources of bias and uncertainty to be considered when estimating the relative risk of reinfection, confounders and the choice of baseline time point, and show how to account for both in reinfection analysis.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Reinfection/immunology , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Humans , Logistic Models , Middle Aged , Polymerase Chain Reaction , Prospective Studies , Reinfection/prevention & control , SARS-CoV-2/immunology , Seroepidemiologic Studies , Time Factors , United States/epidemiology , Workplace/statistics & numerical data , Young Adult
3.
J Am Coll Emerg Physicians Open ; 2(6): e12575, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1508651

ABSTRACT

STUDY OBJECTIVE: We sought to determine the ability of lung point-of-care ultrasound (POCUS) to predict mechanical ventilation and in-hospital mortality in patients with coronavirus disease 2019 (COVID-19). METHODS: This was a prospective observational study of a convenience sample of patients with confirmed COVID-19 presenting to 2 tertiary hospital emergency departments (EDs) in Iran between March and April 2020. An emergency physician attending sonographer performed a 12-zone bilateral lung ultrasound in all patients. Research associates followed the patients on their clinical course. We determined the frequency of positive POCUS findings, the geographic distribution of lung involvement, and lung severity scores. We used multivariable logistic regression to associate lung POCUS findings with clinical outcomes. RESULTS: A total of 125 patients with COVID-like symptoms were included, including 109 with confirmed COVID-19. Among the included patients, 33 (30.3%) patients were intubated, and in-hospital mortality was reported in 19 (17.4%). Lung POCUS findings included pleural thickening 95.4%, B-lines 90.8%, subpleural consolidation 86.2%, consolidation 46.8%, effusions 19.3%, and atelectasis 18.3%. Multivariable logistic regression incorporating binary and scored POCUS findings were able to identify those at highest risk for need of mechanical ventilation (area under the curve 0.80) and in-hospital mortality (area under the curve 0.87). In the binary model ultrasound (US) findings in the anterior lung fields were significantly associated with a need for intubation and mechanical ventilation (odds ratio [OR] 3.67; 0.62-21.6). There was an inverse relationship between mortality and posterior lung field involvement (OR 0.05; 0.01-0.23; and scored OR of 0.57; 0.40-0.82). Anterior lung field involvement was not associated with mortality. CONCLUSIONS: In patients with COVID-19, the anatomic distribution of findings on lung ultrasound is associated with outcomes. Lung POCUS-based models may help clinicians to identify those patients with COVID-19 at risk for clinical deterioration.Key Words: COVID-19; Lung Ultrasound; Mechanical ventilation; Prediction; ICU admission; Mortality; Clinical outcome; Risk stratification; Diagnostic accuracy.

4.
Viruses ; 13(11)2021 11 06.
Article in English | MEDLINE | ID: covidwho-1502534

ABSTRACT

Obesity is a key correlate of severe SARS-CoV-2 outcomes while the role of obesity on risk of SARS-CoV-2 infection, symptom phenotype, and immune response remain poorly defined. We examined data from a prospective SARS-CoV-2 cohort study to address these questions. Serostatus, body mass index, demographics, comorbidities, and prior COVID-19 compatible symptoms were assessed at baseline and serostatus and symptoms monthly thereafter. SARS-CoV-2 immunoassays included an IgG ELISA targeting the spike RBD, multiarray Luminex targeting 20 viral antigens, pseudovirus neutralization, and T cell ELISPOT assays. Our results from a large prospective SARS-CoV-2 cohort study indicate symptom phenotype is strongly influenced by obesity among younger but not older age groups; we did not identify evidence to suggest obese individuals are at higher risk of SARS-CoV-2 infection; and remarkably homogenous immune activity across BMI categories suggests immune protection across these groups may be similar.


Subject(s)
Antibodies, Viral/blood , COVID-19/complications , COVID-19/immunology , Obesity/complications , Obesity/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Age Factors , Body Mass Index , COVID-19/epidemiology , COVID-19/physiopathology , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Risk Factors , SARS-CoV-2/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL