Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Med (N Y) ; 2022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2031561

ABSTRACT

BACKGROUND: Universities are vulnerable to infectious disease outbreaks, making them ideal environments to study transmission dynamics and evaluate mitigation and surveillance measures. Here, we analyze multimodal COVID-19-associated data collected during the 2020-2021 academic year at Colorado Mesa University and introduce a SARS-CoV-2 surveillance and response framework. METHODS: We analyzed epidemiological and sociobehavioral data (demographics, contact tracing, and WiFi-based co-location data) alongside pathogen surveillance data (wastewater and diagnostic testing, and viral genomic sequencing of wastewater and clinical specimens) to characterize outbreak dynamics and inform policy. We applied relative risk, multiple linear regression, and social network assortativity to identify attributes or behaviors associated with contracting SARS-CoV-2. To characterize SARS-CoV-2 transmission, we used viral sequencing, phylogenomic tools, and functional assays. FINDINGS: Athletes, particularly those on high-contact teams, had the highest risk of testing positive. On average, individuals who tested positive had more contacts and longer interaction durations than individuals who never tested positive. The distribution of contacts per individual was overdispersed, although not as overdispersed as the distribution of phylogenomic descendants. Corroboration via technical replicates was essential for identification of wastewater mutations. CONCLUSIONS: Based on our findings, we formulate a framework that combines tools into an integrated disease surveillance program that can be implemented in other congregate settings with limited resources. FUNDING: This work was supported by the National Science Foundation, the Hertz Foundation, the National Institutes of Health, the Centers for Disease Control and Prevention, the Massachusetts Consortium on Pathogen Readiness, the Howard Hughes Medical Institute, the Flu Lab, and the Audacious Project.

2.
Patterns (N Y) ; 3(8): 100572, 2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-2015904

ABSTRACT

An app-based educational outbreak simulator, Operation Outbreak (OO), seeks to engage and educate participants to better respond to outbreaks. Here, we examine the utility of OO for understanding epidemiological dynamics. The OO app enables experience-based learning about outbreaks, spreading a virtual pathogen via Bluetooth among participating smartphones. Deployed at many colleges and in other settings, OO collects anonymized spatiotemporal data, including the time and duration of the contacts among participants of the simulation. We report the distribution, timing, duration, and connectedness of student social contacts at two university deployments and uncover cryptic transmission pathways through individuals' second-degree contacts. We then construct epidemiological models based on the OO-generated contact networks to predict the transmission pathways of hypothetical pathogens with varying reproductive numbers. Finally, we demonstrate that the granularity of OO data enables institutions to mitigate outbreaks by proactively and strategically testing and/or vaccinating individuals based on individual social interaction levels.

SELECTION OF CITATIONS
SEARCH DETAIL