Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Journal of Drug Delivery and Therapeutics ; 12(4-s):101-111, 2022.
Article in English | CAB Abstracts | ID: covidwho-2056786


In-silico Computer-Aided Drug Design (CADD) often comprehends virtual screening (VS) of datasets of natural pharmaco-active compounds for drug discovery protocols. Plant Based Natural Products (PBNPs) still, remains to be a prime source of pharmaco-active compounds due to their unique chemical structural scaffolds and functionalities with distinct chemical characteristic feature from natural source that are much acquiescent to drug metabolism and kinetics. In the Post-COVID-Era number of publications pertaining to PBNPs and publicly accessible plant based natural product databases (PBNPDBs) has significantly increased. Moreover, PBNPs are important sources of inspiration or starting points to develop novel therapeutic agents. However, a well-structured, indepth ADME/Tox profile of PBNPs has been limited or lacking for many of such compounds, this hampers the successful exploitation of PBNPs by pharma industries. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties play key roles in the discovery/ development of drugs, pesticides, food additives, consumer products, and industrial chemicals. In the present study, ADMET-informatics of Tetradecanoic Acid (Myristic Acid) from ethyl acetate fraction of Moringa oleifera leaves to predict drug metabolism and pharmacokinetics (DMPK) outcomes has been taken up. This work contributes to the deeper understanding of Myristic acid as major source of drug from commonly available medicinal plant - Moringa oleifera with immense therapeutic potential. The data generated herein could be useful for NP based lead generation programs.

Journal of Drug Delivery and Therapeutics ; 11(4-s):119-126, 2021.
Article in English | CAB Abstracts | ID: covidwho-1744443


Neem (Azadirachta indica) a member of Meliaceae plays an immense role in human health and disease which is attributed to its composition of Bioactive Secondary Metabolites (BASM). It has been widely used in Indian Traditional Systems of Medicine that includes Ayurveda, Siddha, Unani, Homeopathy and other Folklore Systems of Medicine practiced in the Indian Subcontinent for the treatment and prevention of various diseases. Current global health perspectives and medical practice in the post COVID era has no other way but to seek to merge alternative systems of medicine with evidence-based therapeutic aspects for a better understanding of the metabolic process and its effects in the human body. The studies based on animal model established that neem and its chief constituents play pivotal role in anticancer management through the modulation of various molecular pathways including p53, pTEN, NF-B, PI3K/Akt, Bcl-2, and VEGF. Besides, NEEM plays a vital role in the management of diabetics and its associated long term complication through ROS scavenging and ameliorative potentials to restore oxidative injury/inhibit enzymes linked to. Overall NEEM is considered as GRAS medicinal plant that modulates metabolic inflammations without side effects. Though it has been confirmed that neem and its constituents play role in the scavenging of free radical and prevention of disease pathogenesis, a clear scientific basis of its pharmacoinformatics is still lacking. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis of the fractions revealed the presence of 62 metabolites.