ABSTRACT
As the SARS-CoV-2 pandemic continues to rage worldwide, the emergence of numerous variants of concern (VOC) represents a challenge for the vaccinal protective efficacy and the reliability of commercially available high-throughput immunoassays. Our study demonstrates the administration of two doses of the BNT162b2 vaccine that elicited a robust SARS-CoV-2-specific immune response which was assessed up to 3 months after full vaccination in a cohort of 37 health care workers (HCWs). SARS-CoV-2-specific antibody response, evaluated by four commercially available chemiluminescence immunoassays (CLIA), was qualitatively consistent with the results provided by the gold-standard in vitro neutralization assay (NTA). However, we could not observe a correlation between the quantity of the antibody detected by CLIA assays and their neutralizing activity tested by NTA. Almost all subjects developed a SARS-CoV-2-specific T-cell response. Moreover, vaccinated HCWs developed a similar protective neutralizing antibodies response against the EU (B.1), Alpha (B.1.1.7), Gamma (P.1), and Eta (B.1.525) SARS-CoV-2 variants, while Beta (B.1.351) and Delta (B.1.617.2) strains displayed a consistent partial immune evasion. These results underline the importance of a solid vaccine-elicited immune response and a robust antibody titre. We believe that these relevant results should be taken into consideration in the definition of future vaccinal strategies.
Subject(s)
BNT162 Vaccine/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/genetics , COVID-19/blood , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunoassay , Longitudinal Studies , Male , Middle Aged , Prospective Studies , SARS-CoV-2/genetics , T-Lymphocytes/immunology , Vaccination , Young AdultABSTRACT
OBJECTIVES: The management of healthcare workers (HCWs) exposed to confirmed cases of coronavirus disease 2019 (COVID-19) is still a matter of debate. We aimed to assess in this group the attack rate of asymptomatic carriers and the symptoms most frequently associated with infection. METHODS: Occupational and clinical characteristics of HCWs who underwent nasopharyngeal swab testing for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a university hospital from 24 February 2020 to 31 March 2020 were collected. For those who tested positive and for those who tested positive but who were asymptomatic, we checked the laboratory and clinical data as of 22 May to calculate the time necessary for HCWs to then test negative and to verify whether symptoms developed thereafter. Frequencies of positive tests were compared according to selected variables using multivariable logistic regression models. RESULTS: There were 139 positive tests (8.8%) among 1573 HCWs (95% confidence interval, 7.5-10.3), with a marked difference between symptomatic (122/503, 24.2%) and asymptomatic (17/1070, 1.6%) workers (p < 0.001). Physicians were the group with the highest frequency of positive tests (61/582, 10.5%), whereas clerical workers and technicians had the lowest frequency (5/137, 3.6%). The likelihood of testing positive for COVID-19 increased with the number of reported symptoms; the strongest predictors of test positivity were taste and smell alterations (odds ratio = 76.9) and fever (odds ratio = 9.12). The median time from first positive test to a negative test was 27 days (95% confidence interval, 24-30). CONCLUSIONS: HCWs can be infected with SARS-CoV-2 without displaying any symptoms. Among symptomatic HCWs, the key symptoms to guide diagnosis are taste and smell alterations and fever. A median of almost 4 weeks is necessary before nasopharyngeal swab test results are negative.