ABSTRACT
This study is performed to figure out how the presence of diabetes affects the infection, progression and prognosis of 2019 novel coronavirus disease (COVID-19), and the effective therapy that can treat the diabetes-complicated patients with COVID-19. A multicentre study was performed in four hospitals. COVID-19 patients with diabetes mellitus (DM) or hyperglycaemia were compared with those without these conditions and matched by propensity score matching for their clinical progress and outcome. Totally, 2444 confirmed COVID-19 patients were recruited, from whom 336 had DM. Compared to 1344 non-DM patients with age and sex matched, DM-COVID-19 patients had significantly higher rates of intensive care unit entrance (12.43% vs. 6.58%, P = 0.014), kidney failure (9.20% vs. 4.05%, P = 0.027) and mortality (25.00% vs. 18.15%, P < 0.001). Age and sex-stratified comparison revealed increased susceptibility to COVID-19 only from females with DM. For either non-DM or DM group, hyperglycaemia was associated with adverse outcomes, featured by higher rates of severe pneumonia and mortality, in comparison with non-hyperglycaemia. This was accompanied by significantly altered laboratory indicators including lymphocyte and neutrophil percentage, C-reactive protein and urea nitrogen level, all with correlation coefficients >0.35. Both diabetes and hyperglycaemia were independently associated with adverse prognosis of COVID-19, with hazard ratios of 10.41 and 3.58, respectively.
Subject(s)
COVID-19 , Diabetes Mellitus , Hyperglycemia , Blood Glucose/metabolism , Diabetes Mellitus/epidemiology , Female , Humans , Retrospective Studies , Risk Factors , SARS-CoV-2ABSTRACT
There is growing evidence that angiotensin-converting enzyme 2 is highly expressed on endothelial cells, endothelial dysfunction plays a critical role in coronavirus disease 2019 (COVID-19) progression, but laboratory evidence is still lacking. This study established a multicenter retrospective cohort of 966 COVID-19 patients from three hospitals in Wuhan, China. We found that male (62.8% vs. 46.5%), old age [72 (17) vs. 60.5 (21)], and coexisting chronic diseases (88.5% vs. 60.0%) were associated with poor clinical prognosis in COVID-19. Furthermore, the deteriorated patients exhibited more severe multiorgan damage, coagulation dysfunction, and extensive inflammation. Additionally, a cross-sectional study including 41 non-COVID-19 controls and 39 COVID-19 patients assayed endothelial function parameters in plasma and showed that COVID-19 patients exhibited elevated vascular cell adhesion molecule-1 (VCAM-1) (median [IQR]: 0.32 [0.27] vs. 0.17 [0.11] µg/ml, p < 0.001), E-selectin (21.06 [12.60] vs. 11.01 [4.63] ng/ml, p < 0.001), tissue-type plasminogen activator (tPA) (0.22 [0.12] vs. 0.09 [0.04] ng/ml, p < 0.001), and decreased plasminogen activator inhibitor-1 (0.75 [1.31] vs 6.20 [5.34] ng/ml, p < 0.001), as compared to normal controls. Moreover, VCAM-1 was positively correlated with d-dimer (R = 0.544, p < 0.001); tPA was positively correlated with d-dimer (R = 0.800, p < 0.001) and blood urea nitrogen (R = 0.638, p < 0.001). Our findings further confirm the strong association between endothelial dysfunction and poor prognosis of COVID-19, which offers a rationale for targeting endothelial dysfunction as a therapeutic strategy for COVID-19.
Subject(s)
COVID-19 , Vascular Diseases , Adult , Aged , Aged, 80 and over , Biomarkers , COVID-19/complications , COVID-19/diagnosis , Cross-Sectional Studies , Disease Progression , Endothelial Cells , Female , Humans , Male , Middle Aged , Retrospective Studies , Vascular Cell Adhesion Molecule-1 , Vascular Diseases/virologyABSTRACT
BACKGROUND: The temporal relationship between SARS-CoV-2 and antibody production and clinical progression remained obscure. The aim of this study was to describe the viral kinetics of symptomatic patients with SARS-CoV-2 infection and identify factors that might contribute to prolonged viral shedding. METHODS: Symptomatic COVID-19 patients were enrolled in two hospitals in Wuhan, China, from whom the respiratory samples were collected and measured for viral loads consecutively by reverse transcriptase quantitative PCR (RT-qPCR) assay. The viral shedding pattern was delineated in relate to the epidemiologic and clinical information. RESULTS: Totally 2726 respiratory samples collected from 703 patients were quantified. The SARS-CoV-2 viral loads were at the highest level during the initial stage after symptom onset, which subsequently declined with time. The median time to SARS-CoV-2 negativity of nasopharyngeal test was 28 days, significantly longer in patients with older age (> 60 years old), female gender and those having longer interval from symptom onset to hospital admission (> 10 days). The multivariate Cox regression model revealed significant effect from older age (HR 0.73, 95% CI 0.55-0.96), female gender (HR 0.72, 95% CI 0.55-0.96) and longer interval from symptom onset to admission (HR 0.44, 95% CI 0.33-0.59) on longer time to SARS-CoV-2 negativity. The IgM antibody titer was significantly higher in the low viral loads group at 41-60 days after symptom onset. At the population level, the average viral loads were higher in early than in late outbreak periods. CONCLUSIONS: The prolonged viral shedding of SARS-CoV-2 was observed in COVID-19 patients, particularly in older, female and those with longer interval from symptom onset to admission.
Subject(s)
COVID-19 , Aged , Female , Humans , Middle Aged , Prospective Studies , RNA, Viral , SARS-CoV-2 , Viral Load , Virus SheddingABSTRACT
BACKGROUND: The coronavirus disease 2019 (COVID-19) epidemic has been largely controlled in China, to the point where case fatality rate (CFR) data can be comprehensively evaluated. METHODS: Data on confirmed patients, with a final outcome reported as of 29 March 2020, were obtained from official websites and other internet sources. The hospitalized CFR (HCFR) was estimated, epidemiological features described, and risk factors for a fatal outcome identified. RESULTS: The overall HCFR in China was estimated to be 4.6% (95% CI 4.5-4.8%, P < 0.001). It increased with age and was higher in males than females. Although the highest HCFR observed was in male patients ≥70 years old, the relative risks for death outcome by sex varied across age groups, and the greatest HCFR risk ratio for males vs. females was shown in the age group of 50-60 years, higher than age groups of 60-70 and ≥ 70 years. Differential age/sex HCFR patterns across geographical regions were found: the age effect on HCFR was greater in other provinces outside Hubei than in Wuhan. An effect of longer interval from symptom onset to admission was only observed outside Hubei, not in Wuhan. By performing multivariate analysis and survival analysis, the higher HCFR was associated with older age (both P < 0.001), and male sex (both P < 0.001). Only in regions outside Hubei, longer interval from symptom onset to admission, were associated with higher HCFR. CONCLUSIONS: This up-to-date and comprehensive picture of COVID-19 HCFR and its drivers will help healthcare givers target limited medical resources to patients with high risk of fatality.
Subject(s)
COVID-19/epidemiology , COVID-19/mortality , Hospital Mortality , Hospitalization , SARS-CoV-2 , Adult , Age Factors , Aged , China/epidemiology , Female , Humans , Male , Middle Aged , Risk Factors , Sex Factors , Time-to-TreatmentABSTRACT
Background: COVID-19 has rapidly become a major health emergency worldwide. The characteristic, outcome, and risk factor of COVID-19 in patients with decompensated cirrhosis remain unclear.Methods: Medical records were collected from 23 Chinese hospitals. Patients with decompensated cirrhosis and age- and sex-matched non-liver disease patients were enrolled with 1:4 ratio using stratified sampling.Results: There were more comorbidities with higher Chalson Complication Index (p < 0.001), higher proportion of patients having gastrointestinal bleeding, jaundice, ascites, and diarrhea among those patients (p < 0.05) and in decompensated cirrhosis patients. Mortality (p < 0.05) and the proportion of severe ill (p < 0.001) were significantly high among those patients. Patients in severe ill subgroup had higher mortality (p < 0.001), MELD, and CRUB65 score but lower lymphocytes count. Besides, this subgroup had larger proportion of patients with abnormal (PT), activated partial thromboplatin time (APTT), D-Dimer, alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBL) and Creatinine (Cr) (p < 0.05). Multivariate logistic regression for severity shown that MELD and CRUB65 score reached significance. Higher Child-Pugh and CRUB65 scores were found among non-survival cases and multivariate logistic regression further inferred risk factors for adverse outcome. Receiver Operating Characteristic (ROC) curves also provided remarkable demonstrations for the predictive ability of Child-Pugh and CRUB65 scores.Conclusions: COVID-19 patients with cirrhosis had larger proportion of more severely disease and higher mortality. MELD and CRUB65 score at hospital admission may predict COVID-19 severity while Child-Pugh and CRUB65 score were highly associated with non-survival among those patients.
Subject(s)
COVID-19/mortality , Liver Cirrhosis/complications , SARS-CoV-2 , Severity of Illness Index , Adult , Aged , COVID-19/etiology , Female , Humans , Male , Middle Aged , Retrospective Studies , Risk FactorsABSTRACT
BACKGROUND: With evidence of sustained transmission in more than 190 countries, coronavirus disease 2019 (COVID-19) has been declared a global pandemic. Data are urgently needed about risk factors associated with clinical outcomes. METHODS: A retrospective review of 323 hospitalized patients with COVID-19 in Wuhan was conducted. Patients were classified into 3 disease severity groups (nonsevere, severe, and critical), based on initial clinical presentation. Clinical outcomes were designated as favorable and unfavorable, based on disease progression and response to treatments. Logistic regression models were performed to identify risk factors associated with clinical outcomes, and log-rank test was conducted for the association with clinical progression. RESULTS: Current standard treatments did not show significant improvement in patient outcomes. By univariate logistic regression analysis, 27 risk factors were significantly associated with clinical outcomes. Multivariate regression indicated age >65 years (P < .001), smoking (P = .001), critical disease status (P = .002), diabetes (P = .025), high hypersensitive troponin I (>0.04 pg/mL, P = .02), leukocytosis (>10 × 109/L, P < .001), and neutrophilia (>75 × 109/L, P < .001) predicted unfavorable clinical outcomes. In contrast, the administration of hypnotics was significantly associated with favorable outcomes (P < .001), which was confirmed by survival analysis. CONCLUSIONS: Hypnotics may be an effective ancillary treatment for COVID-19. We also found novel risk factors, such as higher hypersensitive troponin I, predicted poor clinical outcomes. Overall, our study provides useful data to guide early clinical decision making to reduce mortality and improve clinical outcomes of COVID-19.
Subject(s)
COVID-19/epidemiology , Coronavirus/pathogenicity , Hospitalization/statistics & numerical data , Adult , Aged , Aged, 80 and over , Chi-Square Distribution , China/epidemiology , Female , Humans , Hypnotics and Sedatives/therapeutic use , Male , Middle Aged , Obesity/complications , Obesity/epidemiology , Retrospective Studies , Risk Factors , Young AdultABSTRACT
To explore the value, and influencing factors, of D-dimer on the prognosis of patients with COVID-19. A total of 1,114 patients with confirmed COVID-19 who were admitted to three designated COVID-19 hospitals in Wuhan, China from January 18, 2020, to March 24, 2020, were included in this study. We examined the relationship between peripheral blood levels of D-dimer, and clinical classification and prognosis, as well as its related influencing factors. D-dimer levels were found to be related to the clinical classification and the prognosis of clinical outcome. D-dimer levels were more likely to be abnormal in severely and critically ill patients compared with mild and ordinary cases, while D-dimer levels of patients who had died were significantly higher than those of surviving patients according to the results of the first and last lab tests. The results from ROC analyses for mortality risk showed that the AUCs of D-dimer were 0.909, YI was 0.765 at the last lab test, and a D-dimer value of 2.025 mg/L was regarded to be the optimal probability cutoff for a prognosis of death. In addition, we found that patients with advanced age, male gender, dyspnea symptoms, and some underlying diseases have a higher D-dimer value (p < 0.05). In short, D-dimer is related to the clinical classification and can be used to evaluate the prognosis of COVID-19 patients. The D-dimer value of 2.025 mg/L was the optimal probability cutoff for judging an outcome of death. Advanced age, male gender, dyspnea symptoms, and some underlying diseases are influencing factors for D-dimer levels, which impacts the prognosis of patients.
Subject(s)
COVID-19/pathology , Fibrin Fibrinogen Degradation Products/analysis , Adult , Aged , Area Under Curve , COVID-19/mortality , COVID-19/virology , Female , Humans , Male , Middle Aged , Prognosis , ROC Curve , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index , Survival RateABSTRACT
The gonadotropin-releasing hormone (GnRH) neurons exhibit pulse and surge modes of activity to control fertility. They also exhibit an unusual bipolar morphology comprised of a classical soma-proximal dendritic zone and an elongated secretory process that can operate as both a dendrite and an axon, termed a 'dendron'. We show using expansion microscopy that the highest density of synaptic inputs to a GnRH neuron exists at its distal dendron. In vivo, selective chemogenetic inhibition of the GnRH neuron distal dendron abolishes the luteinizing hormone (LH) surge and markedly dampens LH pulses. In contrast, inhibitory chemogenetic and optogenetic strategies targeting the GnRH neuron soma-proximal dendritic zone abolish the LH surge but have no effect upon LH pulsatility. These observations indicate that electrical activity at the soma-proximal dendrites of the GnRH neuron is only essential for the LH surge while the distal dendron represents an autonomous zone where synaptic integration drives pulsatile GnRH secretion.
ABSTRACT
OBJECTIVE: To investigate the value of coagulation indicators D-dimer (DD), prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), and fibrinogen (Fg) in predicting the severity and prognosis of COVID-19. METHODS: A total of 115 patients with confirmed COVID-19, who were admitted to Tianyou Hospital of Wuhan University of Science and Technology between January 18, 2020, and March 5, 2020, were included. The dynamic changes of DD, PT, APTT, and Fg were tested, and the correlation with CT imaging, clinical classifications, and prognosis was studied. RESULTS: Coagulation disorder occurred at the early stage of COVID-19 infection, with 50 (43.5%) patients having DD increased and 74 (64.3%) patients having Fg increased. The levels of DD and Fg were correlated with clinical classification. Among 23 patients who deceased, 18 had DD increased at the first lab test, 22 had DD increased at the second and third lab tests, and 18 had prolonged PT at the third test. The results from ROC analyses for mortality risk showed that the AUCs of DD were 0.742, 0.818, and 0.851 in three times of test, respectively; PT was 0.643, 0.824, and 0.937. In addition, with the progression of the disease, the change of CT imaging was closely related to the increase of the DD value (P < 0.01). CONCLUSIONS: Coagulation dysfunction is more likely to occur in severe and critically ill patients. DD and PT could be used as the significant indicators in predicting the mortality of COVID-19.
Subject(s)
Betacoronavirus , Coronavirus Infections/blood , Fibrin Fibrinogen Degradation Products/metabolism , Pneumonia, Viral/blood , Prothrombin Time , Adult , Aged , Aged, 80 and over , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/mortality , COVID-19 , China/epidemiology , Coronavirus Infections/complications , Coronavirus Infections/mortality , Disease Progression , Female , Fibrinogen/metabolism , Humans , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Partial Thromboplastin Time , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Prognosis , SARS-CoV-2 , Thrombin Time , Tomography, X-Ray ComputedABSTRACT
BACKGROUND: To explore the significance of SAA in evaluating the severity and prognosis of COVID-19. METHODS: A total of 132 patients with confirmed COVID-19 who were admitted to a designated COVID-19 hospital in Wuhan, China from January 18, 2020 to February 26, 2020 were collected. The dynamic changes of blood SAA, CRP, PCT, WBC, Lymphocyte (L), PLT, CT imaging, and disease progression were studied. All patients completed at least twice laboratory data collection and clinical condition assessment at three time points indicated for this study; The length of hospital stay was longer than 14 days prior to February 26, 2020. RESULTS: COVID-19 patients had significantly increased SAA and CRP levels, while L count decreased, and PCT, WBC, and PLT were in the normal range. As disease progressed from mild to critically severe, SAA and CRP gradually increased, while L decreased, and PLT, WBC, and PCT had no significant changes; ROC curve analysis suggests that SAA/L, CRP, SAA, and L count are valuable in evaluating the severity of COVID-19 and distinguishing critically ill patients from mild ones; Patients with SAA consistently trending down during the course of disease have better prognosis, compared with the patients with SAA continuously rising; The initial SAA level is positively correlated with the dynamic changes of the serial CT scans. Patient with higher initial SAA level are more likely to have poor CT imaging. CONCLUSIONS: SAA and L are sensitive indicators in evaluating the severity and prognosis of COVID-19. Monitoring dynamic changes of SAA, combined with CT imaging could be valuable in diagnosis and treatment of COVID-19.