Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Signal Transduct Target Ther ; 7(1): 61, 2022 02 25.
Article in English | MEDLINE | ID: covidwho-1758178

ABSTRACT

Variants are globally emerging very quickly following pandemic prototypic SARS-CoV-2. To evaluate the cross-protection of prototypic SARS-CoV-2 vaccine against its variants, we vaccinated rhesus monkeys with three doses of prototypic SARS-CoV-2 inactivated vaccine, followed by challenging with emerging SARS-CoV-2 variants of concern (VOCs). These vaccinated animals produced neutralizing antibodies against Alpha, Beta, Delta, and Omicron variants, although there were certain declinations of geometric mean titer (GMT) as compared with prototypic SARS-CoV-2. Of note, in vivo this prototypic vaccine not only reduced the viral loads in nasal, throat and anal swabs, pulmonary tissues, but also improved the pathological changes in the lung infected by variants of Alpha, Beta, and Delta. In summary, the prototypic SARS-CoV-2 inactivated vaccine in this study protected against VOCs to certain extension, which is of great significance for prevention and control of COVID-19.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Cross Protection , SARS-CoV-2/drug effects , Vaccination/methods , Vaccines, Inactivated/administration & dosage , Anal Canal/virology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/immunology , COVID-19/virology , Humans , Immunogenicity, Vaccine , Lung/virology , Macaca mulatta , Male , Nasal Cavity/virology , Pharynx/virology , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , T-Lymphocytes/virology , Viral Load/drug effects
2.
Clin Infect Dis ; 73(11): e3949-e3955, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1561940

ABSTRACT

BACKGROUND: We evaluated an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine for immunogenicity and safety in adults aged 18-59 years. METHODS: In this randomized, double-blinded, controlled trial, healthy adults received a medium dose (MD) or a high dose (HD) of the vaccine at an interval of either 14 days or 28 days. Neutralizing antibody (NAb) and anti-S and anti-N antibodies were detected at different times, and adverse reactions were monitored for 28 days after full immunization. RESULTS: A total of 742 adults were enrolled in the immunogenicity and safety analysis. Among subjects in the 0, 14 procedure, the seroconversion rates of NAb in MD and HD groups were 89% and 96% with geometric mean titers (GMTs) of 23 and 30, respectively, at day 14 and 92% and 96% with GMTs of 19 and 21, respectively, at day 28 after immunization. Anti-S antibodies had GMTs of 1883 and 2370 in the MD group and 2295 and 2432 in the HD group. Anti-N antibodies had GMTs of 387 and 434 in the MD group and 342 and 380 in the HD group. Among subjects in the 0, 28 procedure, seroconversion rates for NAb at both doses were both 95% with GMTs of 19 at day 28 after immunization. Anti-S antibodies had GMTs of 937 and 929 for the MD and HD groups, and anti-N antibodies had GMTs of 570 and 494 for the MD and HD groups, respectively. No serious adverse events were observed during the study period. CONCLUSIONS: Adults vaccinated with inactivated SARS-CoV-2 vaccine had NAb as well as anti-S/N antibody and had a low rate of adverse reactions. CLINICAL TRIALS REGISTRATION: NCT04412538.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Double-Blind Method , Humans , Immunogenicity, Vaccine
3.
Emerg Microbes Infect ; 10(1): 2194-2198, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1504286

ABSTRACT

Inactivated coronaviruses, including severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and Middle East respiratory syndrome coronavirus (MERS-CoV), as potential vaccines have been reported to result in enhanced respiratory diseases (ERDs) in murine and nonhuman primate (NHP) pneumonia models after virus challenge, which poses great safety concerns of antibody-dependent enhancement (ADE) for the rapid wide application of inactivated SARS-CoV-2 vaccines in humans, especially when the neutralizing antibody levels induced by vaccination or initial infection quickly wane to nonneutralizing or subneutralizing levels over the time. With passive transfer of diluted postvaccination polyclonal antibodies to mimic the waning antibody responses after vaccination, we found that in the absence of cellular immunity, passive infusion of subneutralizing or nonneutralizing anti-SARS-CoV-2 antibodies could still provide some level of protection against infection upon challenge, and no low-level antibody-enhanced infection was observed. The anti-SARS-CoV-2 IgG-infused group and control group showed similar, mild to moderate pulmonary immunopathology during the acute phase of virus infection, and no evidence of vaccine-related pulmonary immunopathology enhancement was found. Typical immunopathology included elevated MCP-1, IL-8 and IL-33 in bronchoalveolar lavage fluid; alveolar epithelial hyperplasia; and exfoliated cells and mucus in bronchioles. Our results corresponded with the recent observations that no pulmonary immunology was detected in preclinical studies of inactivated SARS-CoV-2 vaccines in either murine or NHP pneumonia models or in large clinical trials and further supported the safety of inactivated SARS-CoV-2 vaccines.


Subject(s)
Antibodies, Viral/immunology , Antibody-Dependent Enhancement , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Alveolar Epithelial Cells/pathology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/toxicity , Bronchioles/chemistry , Bronchioles/pathology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , COVID-19/pathology , COVID-19/virology , Cytokines/analysis , Humans , Hyperplasia , Immunoglobulin G/immunology , Immunoglobulin G/toxicity , Lung/pathology , Macaca mulatta , Male , Mice , Mucus , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Vaccines, Inactivated/immunology
4.
Mol Ther Methods Clin Dev ; 23: 108-118, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1379195

ABSTRACT

Because of the relatively limited understanding of coronavirus disease 2019 (COVID-19) pathogenesis, immunological analysis for vaccine development is needed. Mice and macaques were immunized with an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine prepared by two inactivators. Various immunological indexes were tested, and viral challenges were performed on day 7 or 150 after booster immunization in monkeys. This inactivated SARS-CoV-2 vaccine was produced by sequential inactivation with formaldehyde followed by propiolactone. The various antibody responses and specific T cell responses to different viral antigens elicited in immunized animals were maintained for longer than 150 days. This comprehensive immune response could effectively protect vaccinated macaques by inhibiting viral replication in macaques and substantially alleviating immunopathological damage, and no clinical manifestation of immunopathogenicity was observed in immunized individuals during viral challenge. This candidate inactivated vaccine was identified as being effective against SARS-CoV-2 challenge in rhesus macaques.

5.
J Med Virol ; 93(3): 1732-1738, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196496

ABSTRACT

The coronavirus disease 2019 pandemic caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) had led to a serious public health crisis, and no specific treatments or vaccines are available yet. A nucleocapsid protein (NP)-based enzyme-linked immunosorbent assay (ELISA) detection method is not only important in disease diagnosis, but is required for the evaluation of vaccine efficacy during the development of an inactivated SARS-CoV-2 vaccine. In this study, we expressed both the NP and N-terminally truncated NP (ΔN-NP) of SARS-CoV-2 in an Escherichia coli expression system and described the purification of the soluble recombinant NP and ΔN-NP in details. The identities of the NP and ΔN-NP were confirmed with mass spectrometry. We then used immunoglobulin G detection ELISAs to compare the sensitivity of NP and ΔN-NP in detecting anti-SARS-CoV-2 antibodies. ΔN-NP showed greater sensitivity than NP in the analysis of serially diluted sera from mice and rabbits vaccinated with inactive SARS-CoV-2 and in human sera diluted 1:400. ΔN-NP showed a positive detection rate similar to that of the SARS-CoV-2 S protein in human sera. We conclude that ΔN-NP is a better serological marker than NP for evaluating the immunogenicity of inactivated SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Inactivated/immunology , Animals , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/genetics , Humans , Mice , Mice, Inbred BALB C , Phosphoproteins/genetics , Phosphoproteins/immunology , Rabbits , SARS-CoV-2/genetics , Sequence Deletion/genetics , Sequence Deletion/immunology , Spike Glycoprotein, Coronavirus/genetics
6.
Vaccine ; 39(20): 2746-2754, 2021 05 12.
Article in English | MEDLINE | ID: covidwho-1174522

ABSTRACT

BACKGROUND: This study examined the safety and immunogenicity of an inactivated SARS-CoV-2 vaccine. METHOD: In a phase I randomized, double-blinded, placebo-controlled trial involving 192 healthy adults 18-59 years old, two injections of three doses (50 EU, 100 EU, 150 EU) of an inactivated SARS-CoV-2 vaccine or placebo were administered intramuscularly at a 2- or 4-week interval. The safety and immunogenicity of the vaccine were evaluated. RESULTS: Vaccination was completed in 191 subjects. Forty-four adverse reactions occurred within 28 days, most commonly mild pain and redness at the injection site or slight fatigue. At days 14 and 28, the seroconversion rates were 87.5% and 79.2% (50 EU), 100% and 95.8% (100 EU), and 95.8% and 87.5% (150 EU), respectively, with geometric mean titers (GMTs) of 18.1 and 10.6, 54.5 and 15.4, and 37.1 and 18.5, respectively, for the schedules with 2-week and 4-week intervals. Seroconversion was associated with synchronous upregulation of antibodies against the S protein, N protein and virion and a cytotoxic T lymphocyte (CTL) response. No cytokines and immune cells related to immunopathology were observed. Transcriptome analysis revealed the genetic diversity of immune responses induced by the vaccine. INTERPRETATION: In a population aged 18-59 years in this trial, this inactivated SARS-CoV-2 vaccine was safe and immunogenic. TRIAL REGISTRATION: CTR20200943 and NCT04412538.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccines , Adolescent , Adult , Antibodies, Viral , China , Double-Blind Method , Humans , Immunogenicity, Vaccine , Middle Aged , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL