Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Br J Pharmacol ; 179(9): 1808-1824, 2022 May.
Article in English | MEDLINE | ID: covidwho-1799274

ABSTRACT

Advancing age is accompanied by significant remodelling of the immune system, termed immune senescence, and increased systemic inflammation, termed inflammageing, both of which contribute towards an increased risk of developing chronic diseases in old age. Age-associated alterations in metabolic homeostasis have been linked with changes in a range of physiological functions, but their effects on immune senescence remains poorly understood. In this article, we review the recent literature to formulate hypotheses as to how an age-associated dysfunctional metabolism, driven by an accumulation of key host metabolites (saturated fatty acids, cholesterol, ceramides and lactate) and loss of other metabolites (glutamine, tryptophan and short-chain fatty acids), might play a role in driving immune senescence and inflammageing, ultimately leading to diseases of old age. We also highlight the potential use of metabolic immunotherapeutic strategies targeting these processes in counteracting immune senescence and restoring immune homeostasis in older adults. LINKED ARTICLES: This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.


Subject(s)
Aging , Immune System , Aged , Cellular Senescence , Homeostasis , Humans , Inflammation
2.
Cells ; 11(7)2022 03 24.
Article in English | MEDLINE | ID: covidwho-1785535

ABSTRACT

Sarcopenia is a common complication affecting liver disease patients, yet the underlying mechanisms remain unclear. We aimed to elucidate the cellular mechanisms that drive sarcopenia progression using an in vitro model of liver disease. C2C12 myotubes were serum and amino acid starved for 1-h and subsequently conditioned with fasted ex vivo serum from four non-cirrhotic non-alcoholic fatty liver disease patients (NAFLD), four decompensated end-stage liver disease patients (ESLD) and four age-matched healthy controls (CON) for 4- or 24-h. After 4-h C2C12 myotubes were treated with an anabolic stimulus (5 mM leucine) for 30-min. Myotube diameter was reduced following treatment with serum from ESLD compared with CON (-45%) and NAFLD (-35%; p < 0.001 for both). A reduction in maximal mitochondrial respiration (24% and 29%, respectively), coupling efficiency (~12%) and mitophagy (~13%) was identified in myotubes conditioned with NAFLD and ESLD serum compared with CON (p < 0.05 for both). Myostatin (43%, p = 0.04) and MuRF-1 (41%, p = 0.03) protein content was elevated in myotubes treated with ESLD serum compared with CON. Here we highlight a novel, experimental platform to further probe changes in circulating markers associated with liver disease that may drive sarcopenia and develop targeted therapeutic interventions.


Subject(s)
End Stage Liver Disease , Non-alcoholic Fatty Liver Disease , Sarcopenia , Humans , Muscle Fibers, Skeletal , Non-alcoholic Fatty Liver Disease/complications , Protein Biosynthesis , Sarcopenia/complications
3.
Analyst ; 147(9): 1931-1936, 2022 May 03.
Article in English | MEDLINE | ID: covidwho-1778653

ABSTRACT

The kynurenine metabolite is associated with many diseases and disorders, ranging from diabetes and sepsis to more recently COVID-19. Here we report a fluorescence-based assay for the detection of kynurenine in urine using a specific chemosensor, 3-formyl-4-(ethylthio)-7-(diethylamino)-coumarin. The assay produces a linear response at clinically relevant ranges (1-20 µM), with a limit of detection of 0.7 µM. The average standard addition recoveries of kynurenine in synthetic urine samples are near to 100%, and the relative standard deviation values are less than 8%. The established fluorescence assay for quantitative analysis of kynurenine in urine is facile, sensitive and accurate and holds great potential for low-cost and high-throughput analysis of kynurenine in clinical laboratory settings.


Subject(s)
COVID-19 , Kynurenine , COVID-19/diagnosis , Chromatography, High Pressure Liquid , Humans
4.
Skelet Muscle ; 11(1): 27, 2021 12 11.
Article in English | MEDLINE | ID: covidwho-1571932

ABSTRACT

BACKGROUND: Several chronic inflammatory diseases co-exist with and accelerate sarcopenia (reduction in muscle strength, function and mass) and negatively impact on both morbidity and mortality. There is currently limited research on the extent of sarcopenia in such conditions, how to accurately assess it and whether there are generic or disease-specific mechanisms driving sarcopenia. Therefore, this study aims to identify potential mechanisms driving sarcopenia within chronic inflammatory disease via a multi-modal approach; in an attempt to help define potential interventions for future use. METHODS: This prospective cohort study will consist of a multi-modal assessment of sarcopenia and its underlying mechanisms. Recruitment will target three chronic inflammatory diseases: chronic liver disease (CLD) (n=50), with a subset of NAFLD (n=20), inflammatory bowel disease (IBD) (n=50) and rheumatoid arthritis (RA) (n=50) both before and after therapeutic intervention. In addition, 20 age and sex matched healthy individuals will be recruited for comparison. Participants will undergo 4 assessment visits at weeks 0, 2, 12 and 24. Visits will consist of the following assessments: blood tests, anthropometrics, functional assessment, quadriceps muscle imaging, actigraphy, quality of life questionnaires, food diary collection and muscle biopsy of the vastus lateralis (at weeks 2 and 24 only). In addition, stool and urine samples will be collected for future microbiome and metabolomics analysis. DISCUSSION: This is the first study to use a multi-modal assessment model to phenotype sarcopenia in these chronic inflammatory diseases. We hope to identify generic as well as disease-specific mechanisms driving sarcopenia. We appreciate that these cohorts do require separate standards of care treatments which limit comparison between groups. ETHICS AND DISSEMINATION: The study is approved by the Health Research Authority - West Midlands Solihull Research Ethics Service Committee Authority (REC reference: 18/WM/0167). Recruitment commenced in January 2019 and will continue until July 2021. The study was halted in March 2020 and again in January 2021 with the COVID-19 pandemic. The findings will be disseminated through peer-reviewed publications and conference presentations. All data will be stored on a secure server. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04734496.


Subject(s)
End Stage Liver Disease/complications , Sarcopenia/etiology , Adult , Arthritis, Rheumatoid/complications , Case-Control Studies , Female , Humans , Inflammatory Bowel Diseases/complications , Male , Non-alcoholic Fatty Liver Disease/complications , Prospective Studies
5.
Lancet Respir Med ; 9(11): 1275-1287, 2021 11.
Article in English | MEDLINE | ID: covidwho-1514340

ABSTRACT

BACKGROUND: The impact of COVID-19 on physical and mental health and employment after hospitalisation with acute disease is not well understood. The aim of this study was to determine the effects of COVID-19-related hospitalisation on health and employment, to identify factors associated with recovery, and to describe recovery phenotypes. METHODS: The Post-hospitalisation COVID-19 study (PHOSP-COVID) is a multicentre, long-term follow-up study of adults (aged ≥18 years) discharged from hospital in the UK with a clinical diagnosis of COVID-19, involving an assessment between 2 and 7 months after discharge, including detailed recording of symptoms, and physiological and biochemical testing. Multivariable logistic regression was done for the primary outcome of patient-perceived recovery, with age, sex, ethnicity, body-mass index, comorbidities, and severity of acute illness as covariates. A post-hoc cluster analysis of outcomes for breathlessness, fatigue, mental health, cognitive impairment, and physical performance was done using the clustering large applications k-medoids approach. The study is registered on the ISRCTN Registry (ISRCTN10980107). FINDINGS: We report findings for 1077 patients discharged from hospital between March 5 and Nov 30, 2020, who underwent assessment at a median of 5·9 months (IQR 4·9-6·5) after discharge. Participants had a mean age of 58 years (SD 13); 384 (36%) were female, 710 (69%) were of white ethnicity, 288 (27%) had received mechanical ventilation, and 540 (50%) had at least two comorbidities. At follow-up, only 239 (29%) of 830 participants felt fully recovered, 158 (20%) of 806 had a new disability (assessed by the Washington Group Short Set on Functioning), and 124 (19%) of 641 experienced a health-related change in occupation. Factors associated with not recovering were female sex, middle age (40-59 years), two or more comorbidities, and more severe acute illness. The magnitude of the persistent health burden was substantial but only weakly associated with the severity of acute illness. Four clusters were identified with different severities of mental and physical health impairment (n=767): very severe (131 patients, 17%), severe (159, 21%), moderate along with cognitive impairment (127, 17%), and mild (350, 46%). Of the outcomes used in the cluster analysis, all were closely related except for cognitive impairment. Three (3%) of 113 patients in the very severe cluster, nine (7%) of 129 in the severe cluster, 36 (36%) of 99 in the moderate cluster, and 114 (43%) of 267 in the mild cluster reported feeling fully recovered. Persistently elevated serum C-reactive protein was positively associated with cluster severity. INTERPRETATION: We identified factors related to not recovering after hospital admission with COVID-19 at 6 months after discharge (eg, female sex, middle age, two or more comorbidities, and more acute severe illness), and four different recovery phenotypes. The severity of physical and mental health impairments were closely related, whereas cognitive health impairments were independent. In clinical care, a proactive approach is needed across the acute severity spectrum, with interdisciplinary working, wide access to COVID-19 holistic clinical services, and the potential to stratify care. FUNDING: UK Research and Innovation and National Institute for Health Research.


Subject(s)
COVID-19 , Health Status , Mental Health , Acute Disease , Adult , Aged , COVID-19/complications , Cognition , Comorbidity , Female , Follow-Up Studies , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , United Kingdom/epidemiology
6.
J Gerontol A Biol Sci Med Sci ; 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1450390

ABSTRACT

BACKGROUND: Ageing affects immunity, potentially altering fever response to infection. We assess effects of biological variables on basal temperature, and during COVID-19 infection, proposing an updated temperature threshold for older adults ≥65 years. METHODS: Participants were from four cohorts: 1089 unaffected adult TwinsUK volunteers; 520 adults with emergency admission to a London hospital with RT-PCR confirmed SARS-CoV-2 infection; 757 adults with emergency admission to a Birmingham hospital with RT-PCR confirmed SARS-CoV-2 infection and 3972 adult community-based COVID Symptom Study participants self-reporting a positive RT-PCR test. Heritability was assessed using saturated and univariate ACE models; mixed-effect and multivariable linear regression examined associations between temperature, age, sex and BMI; multivariable logistic regression examined associations between fever (≥37.8°C) and age; receiver operating characteristic (ROC) analysis was used to identify temperature threshold for adults ≥ 65 years. RESULTS: Among unaffected volunteers, lower BMI (p=0.001), and increasing age (p<0.001) associated with lower basal temperature. Basal temperature showed a heritability of 47% 95% Confidence Interval 18-57%). In COVID-19+ participants, increasing age was associated with lower temperatures in Birmingham and community-based cohorts (p<0.001). For each additional year of age, participants were 1% less likely to demonstrate a fever ≥37.8°C (OR 0.99; p<0.001). Combining healthy and COVID-19+ participants, a temperature of 37.4°C in adults ≥65 years had similar sensitivity and specificity to 37.8°C in adults <65 years for discriminating infection. CONCLUSIONS: Ageing affects temperature in health and acute infection, with significant heritability, indicating genetic factors contribute to temperature regulation. Our observations suggest a lower threshold (37.4°C/97.3°F) for identifying fever in older adults ≥65 years.

7.
Science ; 373(6552): 281-282, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1315790

Subject(s)
Cellular Senescence
8.
Front Immunol ; 12: 680134, 2021.
Article in English | MEDLINE | ID: covidwho-1278396

ABSTRACT

Whilst the majority of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of COVID-19, experience mild to moderate symptoms, approximately 20% develop severe respiratory complications that may progress to acute respiratory distress syndrome, pulmonary failure and death. To date, single cell and high-throughput systems based analyses of the peripheral and pulmonary immune responses to SARS-CoV-2 suggest that a hyperactive and dysregulated immune response underpins the development of severe disease, with a prominent role assigned to neutrophils. Characterised in part by robust generation of neutrophil extracellular traps (NETs), the presence of immature, immunosuppressive and activated neutrophil subsets in the circulation, and neutrophilic infiltrates in the lung, a granulocytic signature is emerging as a defining feature of severe COVID-19. Furthermore, an assessment of the number, maturity status and/or function of circulating neutrophils at the time of hospital admission has shown promise as a prognostic tool for the early identification of patients at risk of clinical deterioration. Here, by summarising the results of studies that have examined the peripheral and pulmonary immune response to SARS-CoV-2, we provide a comprehensive overview of the changes that occur in the composition, phenotype and function of the neutrophil pool in COVID-19 patients of differing disease severities and discuss potential mediators of SARS-CoV-2-induced neutrophil dysfunction. With few specific treatments currently approved for COVID-19, we conclude the review by discussing whether neutrophils represent a potential therapeutic target for the treatment of patients with severe COVID-19.


Subject(s)
COVID-19/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , Extracellular Traps/immunology , Humans
10.
Front Immunol ; 11: 573662, 2020.
Article in English | MEDLINE | ID: covidwho-895303

ABSTRACT

Bearing a strong resemblance to the phenotypic and functional remodeling of the immune system that occurs during aging (termed immunesenescence), the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus disease 2019 (COVID-19), is characterized by an expansion of inflammatory monocytes, functional exhaustion of lymphocytes, dysregulated myeloid responses and the presence of highly activated senescent T cells. Alongside advanced age, male gender and pre-existing co-morbidities [e.g., obesity and type 2 diabetes (T2D)] are emerging as significant risk factors for COVID-19. Interestingly, immunesenescence is more profound in males when compared to females, whilst accelerated aging of the immune system, termed premature immunesenescence, has been described in obese subjects and T2D patients. Thus, as three distinct demographic groups with an increased susceptibility to COVID-19 share a common immune profile, could immunesenescence be a generic contributory factor in the development of severe COVID-19? Here, by focussing on three key aspects of an immune response, namely pathogen recognition, elimination and resolution, we address this question by discussing how immunesenescence may weaken or exacerbate the immune response to SARS-CoV-2. We also highlight how aspects of immunesenescence could render potential COVID-19 treatments less effective in older adults and draw attention to certain therapeutic options, which by reversing or circumventing certain features of immunesenescence may prove to be beneficial for the treatment of groups at high risk of severe COVID-19.


Subject(s)
Cellular Senescence/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Aging/immunology , Betacoronavirus/immunology , COVID-19 , Diabetes Mellitus, Type 2/immunology , Female , Humans , Male , Monocytes/immunology , Neutrophils/immunology , Obesity/immunology , Pandemics , Risk Factors , SARS-CoV-2 , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL