Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
PLoS One ; 17(11): e0276751, 2022.
Article in English | MEDLINE | ID: covidwho-2116658


Despite new antivirals are being approved against SARS-CoV-2 they suffer from significant constraints and are not indicated for hospitalized patients, who are left with few antiviral options. Repurposed drugs have previously shown controversial clinical results and it remains difficult to understand why certain trials delivered positive results and other trials failed. Our manuscript contributes to explaining the puzzle: this might have been caused by a suboptimal drug exposure and, consequently, an incomplete virus suppression, also because the drugs have mostly been used as add-on monotherapies. As with other viruses (e.g., HIV and HCV) identifying synergistic combinations among such drugs could overcome monotherapy-related limitations. In a cell culture model for SARS-CoV-2 infection the following stringent criteria were adopted to assess drug combinations: 1) identify robust, synergistic antiviral activity with no increase in cytotoxicity, 2) identify the lowest drug concentration inhibiting the virus by 100% (LIC100) and 3) understand whether the LIC100 could be reached in the lung at clinically indicated drug doses. Among several combinations tested, remdesivir with either azithromycin or ivermectin synergistically increased the antiviral activity with no increase in cytotoxicity, improving the therapeutic index and lowering the LIC100 of every one of the drugs to levels that are expected to be achievable and maintained in the lung for a therapeutically relevant period of time. These results are consistent with recent clinical observations showing that intensive care unit admission was significantly delayed by the combination of AZI and RDV, but not by RDV alone, and could have immediate implications for the treatment of hospitalized patients with COVID-19 as the proposed "drug cocktails" should have antiviral activity against present and future SARS-CoV-2 variants without significant overlapping toxicity, while minimizing the onset of drug resistance. Our results also provide a validated methodology to help sort out which combination of drugs are most likely to be efficacious in vivo, based on their in vitro activity, potential synergy and PK profiles.

COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/pharmacology , Alanine/therapeutic use , Lung , Drug Combinations
Nanoscale ; 13(39): 16465-16476, 2021 Oct 14.
Article in English | MEDLINE | ID: covidwho-1434162


The coronavirus pandemic (COVID-19) had spread rapidly since December 2019, when it was first identified in Wuhan, China. As of April 2021, more than 130 million cases have been confirmed, with more than 3 million deaths, making it one of the deadliest pandemics in history. Different approaches must be put in place to confront a new pandemic: community-based behaviours (i.e., isolation and social distancing), antiviral treatments, and vaccines. Although behaviour-based actions have produced significant benefits and several efficacious vaccines are now available, there is still an urgent need for treatment options. Remdesivir represents the first antiviral drug approved by the Food and Drug Administration for COVID-19 but has several limitations in terms of safety and treatment benefits. There is still a strong request for other effective, safe, and broad-spectrum antiviral systems in light of future emergent coronaviruses. Here, we describe a polymeric nanomaterial derived from L-lysine, with an antiviral activity against SARS-CoV-2 associated with a good safety profile in vitro. Nanoparticles of hyperbranched polylysine, synthesized by L-lysine's thermal polymerization catalyzed by boric acid, effectively inhibit the SARS-CoV-2 replication. The virucidal activity is associated with the charge and dimension of the nanomaterial, favouring the electrostatic interaction with the viral surface being only slightly larger than the virions' dimensions. Low-cost production and easiness of synthesis strongly support the further development of such innovative nanomaterials as a tool for potential treatments of COVID-19 and, in general, as broad-spectrum antivirals.

Antiviral Agents , COVID-19 , Antiviral Agents/pharmacology , Humans , Pandemics , Polylysine , SARS-CoV-2