Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
ERJ Open Res ; 8(2)2022 Apr.
Article in English | MEDLINE | ID: covidwho-1833277

ABSTRACT

Purpose: In this study, we propose an artificial intelligence (AI) framework based on three-dimensional convolutional neural networks to classify computed tomography (CT) scans of patients with coronavirus disease 2019 (COVID-19), influenza/community-acquired pneumonia (CAP), and no infection, after automatic segmentation of the lungs and lung abnormalities. Methods: The AI classification model is based on inflated three-dimensional Inception architecture and was trained and validated on retrospective data of CT images of 667 adult patients (no infection n=188, COVID-19 n=230, influenza/CAP n=249) and 210 adult patients (no infection n=70, COVID-19 n=70, influenza/CAP n=70), respectively. The model's performance was independently evaluated on an internal test set of 273 adult patients (no infection n=55, COVID-19 n= 94, influenza/CAP n=124) and an external validation set from a different centre (305 adult patients: COVID-19 n=169, no infection n=76, influenza/CAP n=60). Results: The model showed excellent performance in the external validation set with area under the curve of 0.90, 0.92 and 0.92 for COVID-19, influenza/CAP and no infection, respectively. The selection of the input slices based on automatic segmentation of the abnormalities in the lung reduces analysis time (56 s per scan) and computational burden of the model. The Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) score of the proposed model is 47% (15 out of 32 TRIPOD items). Conclusion: This AI solution provides rapid and accurate diagnosis in patients suspected of COVID-19 infection and influenza.

2.
PLoS One ; 16(4): e0249920, 2021.
Article in English | MEDLINE | ID: covidwho-1186609

ABSTRACT

OBJECTIVE: To establish whether one can build a mortality prediction model for COVID-19 patients based solely on demographics and comorbidity data that outperforms age alone. Such a model could be a precursor to implementing smart lockdowns and vaccine distribution strategies. METHODS: The training cohort comprised 2337 COVID-19 inpatients from nine hospitals in The Netherlands. The clinical outcome was death within 21 days of being discharged. The features were derived from electronic health records collected during admission. Three feature selection methods were used: LASSO, univariate using a novel metric, and pairwise (age being half of each pair). 478 patients from Belgium were used to test the model. All modeling attempts were compared against an age-only model. RESULTS: In the training cohort, the mortality group's median age was 77 years (interquartile range = 70-83), higher than the non-mortality group (median = 65, IQR = 55-75). The incidence of former/active smokers, male gender, hypertension, diabetes, dementia, cancer, chronic obstructive pulmonary disease, chronic cardiac disease, chronic neurological disease, and chronic kidney disease was higher in the mortality group. All stated differences were statistically significant after Bonferroni correction. LASSO selected eight features, novel univariate chose five, and pairwise chose none. No model was able to surpass an age-only model in the external validation set, where age had an AUC of 0.85 and a balanced accuracy of 0.77. CONCLUSION: When applied to an external validation set, we found that an age-only mortality model outperformed all modeling attempts (curated on www.covid19risk.ai) using three feature selection methods on 22 demographic and comorbid features.


Subject(s)
COVID-19/mortality , Age Factors , Aged , Aged, 80 and over , Belgium/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Cohort Studies , Communicable Disease Control , Comorbidity , Electronic Health Records , Female , Hospitalization , Humans , Male , Middle Aged , Netherlands/epidemiology , Prognosis , Risk Assessment , Risk Factors , SARS-CoV-2/isolation & purification
3.
Diagnostics (Basel) ; 11(1)2020 Dec 30.
Article in English | MEDLINE | ID: covidwho-1006985

ABSTRACT

The coronavirus disease 2019 (COVID-19) outbreak has reached pandemic status. Drastic measures of social distancing are enforced in society and healthcare systems are being pushed to and beyond their limits. To help in the fight against this threat on human health, a fully automated AI framework was developed to extract radiomics features from volumetric chest computed tomography (CT) exams. The detection model was developed on a dataset of 1381 patients (181 COVID-19 patients plus 1200 non COVID control patients). A second, independent dataset of 197 RT-PCR confirmed COVID-19 patients and 500 control patients was used to assess the performance of the model. Diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC). The model had an AUC of 0.882 (95% CI: 0.851-0.913) in the independent test dataset (641 patients). The optimal decision threshold, considering the cost of false negatives twice as high as the cost of false positives, resulted in an accuracy of 85.18%, a sensitivity of 69.52%, a specificity of 91.63%, a negative predictive value (NPV) of 94.46% and a positive predictive value (PPV) of 59.44%. Benchmarked against RT-PCR confirmed cases of COVID-19, our AI framework can accurately differentiate COVID-19 from routine clinical conditions in a fully automated fashion. Thus, providing rapid accurate diagnosis in patients suspected of COVID-19 infection, facilitating the timely implementation of isolation procedures and early intervention.

4.
Eur Respir J ; 56(2)2020 08.
Article in English | MEDLINE | ID: covidwho-744960

ABSTRACT

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) has globally strained medical resources and caused significant mortality. OBJECTIVE: To develop and validate a machine-learning model based on clinical features for severity risk assessment and triage for COVID-19 patients at hospital admission. METHOD: 725 patients were used to train and validate the model. This included a retrospective cohort from Wuhan, China of 299 hospitalised COVID-19 patients from 23 December 2019 to 13 February 2020, and five cohorts with 426 patients from eight centres in China, Italy and Belgium from 20 February 2020 to 21 March 2020. The main outcome was the onset of severe or critical illness during hospitalisation. Model performances were quantified using the area under the receiver operating characteristic curve (AUC) and metrics derived from the confusion matrix. RESULTS: In the retrospective cohort, the median age was 50 years and 137 (45.8%) were male. In the five test cohorts, the median age was 62 years and 236 (55.4%) were male. The model was prospectively validated on five cohorts yielding AUCs ranging from 0.84 to 0.93, with accuracies ranging from 74.4% to 87.5%, sensitivities ranging from 75.0% to 96.9%, and specificities ranging from 55.0% to 88.0%, most of which performed better than the pneumonia severity index. The cut-off values of the low-, medium- and high-risk probabilities were 0.21 and 0.80. The online calculators can be found at www.covid19risk.ai. CONCLUSION: The machine-learning model, nomogram and online calculator might be useful to access the onset of severe and critical illness among COVID-19 patients and triage at hospital admission.


Subject(s)
Coronavirus Infections/diagnosis , Hospital Mortality/trends , Machine Learning , Pneumonia, Viral/diagnosis , Triage/methods , Adult , Age Factors , Aged , Area Under Curve , Belgium , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques , Cohort Studies , Coronavirus Infections/epidemiology , Decision Support Systems, Clinical , Female , Hospitalization/statistics & numerical data , Humans , Internationality , Italy , Male , Middle Aged , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Predictive Value of Tests , ROC Curve , Reproducibility of Results , Retrospective Studies , Risk Assessment , Severity of Illness Index , Sex Factors , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL