Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Zhonghua Liu Xing Bing Xue Za Zhi ; 44(3): 379-385, 2023 Mar 10.
Article in Chinese | MEDLINE | ID: covidwho-2254739


Objective: To explore the epidemiological characteristic of a COVID-19 outbreak caused by 2019-nCoV Omicron variant BF.7 and other provinces imported in Shenzhen and analyze transmission chains and characteristics. Methods: Field epidemiological survey was conducted to identify the transmission chain, analyze the generation relationship among the cases. The 2019-nCoV nucleic acid positive samples were used for gene sequencing. Results: From 8 to 23 October, 2022, a total of 196 cases of COVID-19 were reported in Shenzhen, all the cases had epidemiological links. In the cases, 100 were men and 96 were women, with a median of age, M (Q1, Q3) was 33(25, 46) years. The outbreak was caused by traverlers initial cases infected with 2019-nCoV who returned to Shenzhen after traveling outside of Guangdong Province.There were four transmission chains, including the transmission in place of residence and neighbourhood, affecting 8 persons, transmission in social activity in the evening on 7 October, affecting 65 persons, transmission in work place on 8 October, affecting 48 persons, and transmission in a building near the work place, affecting 74 persons. The median of the incubation period of the infection, M (Q1, Q3) was 1.44 (1.11, 2.17) days. The incubation period of indoor exposure less than that of the outdoor exposure, M (Q1, Q3) was 1.38 (1.06, 1.84) and 1.95 (1.22, 2.99) days, respcetively (Wald χ2=10.27, P=0.001). With the increase of case generation, the number and probability of gene mutation increased. In the same transmission chain, the proportion of having 1-3 mutation sites was high in the cases in the first generation. Conclusions: The transmission chains were clear in this epidemic. The incubation period of Omicron variant BF.7 infection was shorter, the transmission speed was faster, and the gene mutation rate was higher. It is necessary to conduct prompt response and strict disease control when epidemic occurs.

COVID-19 , Epidemics , Male , Humans , Female , SARS-CoV-2 , COVID-19/epidemiology , Disease Outbreaks , China/epidemiology
2021 IEEE Global Conference on Artificial Intelligence and Internet of Things, GCAIoT 2021 ; : 142-146, 2021.
Article in English | Scopus | ID: covidwho-1769581
Zhonghua Liu Xing Bing Xue Za Zhi ; 41(8): 1225-1230, 2020 Aug 10.
Article in Chinese | MEDLINE | ID: covidwho-144094


Objectives: This study aimed to evaluate the effect of the strategies on COVID-19 outbreak control in Shenzhen, and to clarify the feasibility of these strategies in metropolitans that have high population density and strong mobility. Methods: The epidemic feature of COVID-19 was described by different phases and was used to observe the effectiveness of intervention. Hierarchical spot map was drawn to clarify the distribution and transmission risk of infection sources at different time points. The Susceptible-Exposed-Infectious-Asymptomatic-Recovered model was established to estimate case numbers without intervention and compare with the actual number of cases to determine the effect of intervention. The positive rate of the nucleic acid test was used to reflect the risk of human exposure. A survey on COVID-19 related knowledge, attitude and behaviors were used to estimate the abilities of personal protection and emergency response. Results: The epidemic of COVID-19 in Shenzhen experienced the rising, plateau and decline stage. The case number increased rapidly at the beginning, with short duration of peak period. Although the epidemic curve showed human-to-human transmission, the "trailing" was not obvious. From the spot map, during the intervention period, the source of infection was widely distributed. More cases and higher transmission risk were observed in areas with higher population density. After the effective intervention measures, both infection sources and the risk of transmission decreased. After compared with the estimated case numbers without intervention, actual number proved the COVID-19 control strategies were effective. The positive rate of nucleic acid test for high risk populations decreased and no new cases reported since February 16. Shenzhen citizens had high knowledge, attitude and behavior level, and high protection ability and emergency response. Conclusions: Although the response initiated by the health administration department played a key role at the early stage of the epidemic, it was not enough to contain the outbreak of COVID-19. The first-level emergency response initiated by provincial and municipal government was effective and ensured the start of work resumption after the Spring Festival. Metropolitans like Shenzhen can also achieve the goals of strategies and measures for containment and mitigation of COVID-19.

Betacoronavirus , Communicable Disease Control/methods , Coronavirus Infections/epidemiology , Disaster Planning , Disease Transmission, Infectious/prevention & control , Emergency Medical Services/organization & administration , Pandemics , Pneumonia, Viral/epidemiology , COVID-19 , China/epidemiology , Emergency Responders , Humans , Pneumonia, Viral/prevention & control , SARS-CoV-2