Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Adv Sci (Weinh) ; : e2205445, 2023 Jun 02.
Article in English | MEDLINE | ID: covidwho-20244847

ABSTRACT

The spread of coronavirus disease 2019 (COVID-19), caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2), has progressed into a global pandemic. To date, thousands of genetic variants have been identified among SARS-CoV-2 isolates collected from patients. Sequence analysis reveals that the codon adaptation index (CAI) values of viral sequences have decreased over time but with occasional fluctuations. Through evolution modeling, it is found that this phenomenon may result from the virus's mutation preference during transmission. Using dual-luciferase assays, it is further discovered that the deoptimization of codons in the viral sequence may weaken protein expression during virus evolution, indicating that codon usage may play an important role in virus fitness. Finally, given the importance of codon usage in protein expression and particularly for mRNA vaccines, it is designed several codon-optimized Omicron BA.2.12.1, BA.4/5, and XBB.1.5 spike mRNA vaccine candidates and experimentally validated their high levels of expression. This study highlights the importance of codon usage in virus evolution and provides guidelines for codon optimization in mRNA and DNA vaccine development.

2.
Chem Eng J ; 446: 137067, 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-2299157

ABSTRACT

Chloroxylenol (PCMX) is widely used as disinfectant since the epidemic outbreak due to its effective killing of Covid-19 virus. Its stable chemical properties make it frequently detected in surface water. Herein, we successfully modified Fe3O4 nanoparticles with S-WO3 (X-Fe3O4/S-WO3) to accelerate the Fe2+/Fe3+ cycle. The composite has outstanding PCMX degradation and peroxymonosulfate (PMS) decomposition efficiency over a wide pH range (3.0 âˆ¼ 9.0). 80-Fe3O4/S-WO3/PMS system not only increased PMS decomposition efficiency from 27.7% to 100.0%, but also realized an enhancement of PCMX degradation efficiency by 16 times in comparison with that of Fe3O4 alone. The catalyst utilization efficiency reached 0.3506 mmol∙g-1∙min-1 which stands out among most Fenton-like catalysts. The composite has excellent degradation ability to a variety of emerging pollutants, such as antibiotics, drugs, phenols and endocrine disrupters, and at least a 90% removal efficiency reached in 10 min. The degradation of PCMX was dominated by HO•, SO4 •- and 1O2. The degradation pathways of PCMX were analyzed in detail. The component WS2 in S-WO3 plays a co-catalytic role instead of WO3. And the exposed active W4+ surf. efficiently enhanced the Fe3+/Fe2+ cycle, thereby complete PMS decomposition and high catalytic efficiency were achieved. Our findings clarify that applying two-dimensional transition metal sulfide WS2 to modify heterogeneous Fe3O4 is a feasible strategy to improve Fenton-like reaction and provide a promising catalyst for PCMX degradation.

4.
Mol Biol Evol ; 40(4)2023 04 04.
Article in English | MEDLINE | ID: covidwho-2304585

ABSTRACT

Coronaviruses are single-stranded, positive-sense RNA viruses that can infect many mammal and avian species. The Spike (S) protein of coronaviruses binds to a receptor on the host cell surface to promote viral entry. The interactions between the S proteins of coronaviruses and receptors of host cells are extraordinarily complex, with coronaviruses from different genera being able to recognize the same receptor and coronaviruses from the same genus able to bind distinct receptors. As the coronavirus disease 2019 pandemic has developed, many changes in the S protein have been under positive selection by altering the receptor-binding affinity, reducing antibody neutralization activities, or affecting T-cell responses. It is intriguing to determine whether the selection pressure on the S gene differs between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses due to the host shift from nonhuman animals to humans. Here, we show that the S gene, particularly the S1 region, has experienced positive selection in both SARS-CoV-2 and other coronaviruses. Although the S1 N-terminal domain exhibits signals of positive selection in the pairwise comparisons in all four coronavirus genera, positive selection is primarily detected in the S1 C-terminal domain (the receptor-binding domain) in the ongoing evolution of SARS-CoV-2, possibly owing to the change in host settings and the widespread natural infection and SARS-CoV-2 vaccination in humans.


Subject(s)
COVID-19 , Animals , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , COVID-19 Vaccines , Mammals/metabolism
5.
Heliyon ; 9(2): e13731, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2288531

ABSTRACT

In recent years, COVID-19 has spread across the whole world, and manpowered collection of pharyngeal samples undoubtedly increases the possibility of cross-infections. In this article, based on our previous fabricated soft manipulator (Cell Reports Physical Science, 2021, 2, 100600), we performed the COVID-19 sampling on real human volunteers by exploiting a pre-programmed unmanned system. The unmanned sampling system mainly includes a soft manipulator and a rigid motion platform, which are adjusted by pneumatic control box and the motor control modules, respectively. Drawn on the lead-through teaching method, the unmanned sampling of COVID-19 is realized by recording the applied pressure in soft manipulator and the feed motion of rigid platform. This research provides a potential approach for unmanned COVID-19 sampling, solving the risk of cross-infection during manual collection.

7.
PLoS Pathog ; 19(1): e1011116, 2023 01.
Article in English | MEDLINE | ID: covidwho-2214825

ABSTRACT

Bat coronavirus RaTG13 shares about 96.2% nucleotide sequence identity with that of SARS-CoV-2 and uses human and Rhinolophus affinis (Ra) angiotensin-converting enzyme 2 (ACE2) as entry receptors. Whether there are bat species other than R. affinis susceptible to RaTG13 infection remains elusive. Here, we show that, among 18 different bat ACE2s tested, only RaACE2 is highly susceptible to transduction by RaTG13 S pseudovirions, indicating that the bat species harboring RaTG13 might be very limited. RaACE2 has seven polymorphic variants, RA-01 to RA-07, and they show different susceptibilities to RaTG13 S pseudovirions transduction. Sequence and mutagenesis analyses reveal that residues 34, 38, and 83 in RaACE2 might play critical roles in interaction with the RaTG13 S protein. Of note, RaACE2 polymorphisms have minimal effect on S proteins of SARS-CoV-2 and several SARS-CoV-2 related CoVs (SC2r-CoVs) including BANAL-20-52 and BANAL-20-236 in terms of binding, membrane fusion, and pseudovirus entry. Further mutagenesis analyses identify residues 501 and 505 in S proteins critical for the recognition of different RaACE2 variants and pangolin ACE2 (pACE2), indicating that RaTG13 might have not been well adapted to R. affinis bats. While single D501N and H505Y changes in RaTG13 S protein significantly enhance the infectivity and minimize the difference in susceptibility among different RaACE2 variants, an N501D substitution in SARS-CoV-2 S protein displays marked disparity in transduction efficiencies among RaACE2 variants with a significant reduction in infectivity on several RaACE2 variants. Finally, a T372A substitution in RaTG13 S protein not only significantly increases infectivity on all RaACE2 variants, but also markedly enhances entry on several bat ACE2s including R. sinicus YN, R. pearsonii, and R. ferrumeiqunum. However, the T372A mutant is about 4-fold more sensitive to neutralizing sera from mice immunized with BANAL-20-52 S, suggesting that the better immune evasion ability of T372 over A372 might contribute to the natural selective advantage of T372 over A372 among bat CoVs. Together, our study aids a better understanding of coronavirus entry, vaccine design, and evolution.


Subject(s)
COVID-19 , Chiroptera , Animals , Mice , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/metabolism
8.
Front Genet ; 13: 1053772, 2022.
Article in English | MEDLINE | ID: covidwho-2141781

ABSTRACT

The global outbreak of the COVID-19 epidemic has become a major public health problem. COVID-19 virus infection triggers a complex immune response. CD8+ T cells, in particular, play an essential role in controlling the severity of the disease. However, the mechanism of the regulatory role of CD8+ T cells on COVID-19 remains poorly investigated. In this study, single-cell gene expression profiles from three CD8+ T cell subtypes (effector, memory, and naive T cells) were downloaded. Each cell subtype included three disease states, namely, acute COVID-19, convalescent COVID-19, and unexposed individuals. The profiles on each cell subtype were individually analyzed in the same way. Irrelevant features in the profiles were first excluded by the Boruta method. The remaining features for each CD8+ T cells subtype were further analyzed by Max-Relevance and Min-Redundancy, Monte Carlo feature selection, and light gradient boosting machine methods to obtain three feature lists. These lists were then brought into the incremental feature selection method to determine the optimal features for each cell subtype. Their corresponding genes may be latent biomarkers to determine COVID-19 severity. Genes, such as ZFP36, DUSP1, TCR, and IL7R, can be confirmed to play an immune regulatory role in COVID-19 infection and recovery. The results of functional enrichment analysis revealed that these important genes may be associated with immune functions, such as response to cAMP, response to virus, T cell receptor complex, T cell activation, and T cell differentiation. This study further set up different gene expression pattens, represented by classification rules, on three states of COVID-19 and constructed several efficient classifiers to distinguish COVID-19 severity. The findings of this study provided new insights into the biological processes of CD8+ T cells in regulating the immune response.

10.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(6): 561-570, 2022 Jun.
Article in Chinese | MEDLINE | ID: covidwho-1974966

ABSTRACT

The global coronavirus disease 2019 epidemic is still in a pandemic state. Aging population with underlying diseases is prone to become severe, and have a higher mortality. The treatment capacity of the critical care department directly determines the treatment success rate of critical illness. At present, there is still a certain gap between domestic and foreign countries in intensive care unit (ICU), which is not only in the allocation of medical staff, but also in the beds and settings. The current medical model cannot fully meet the needs of development. The experience and lessons of many major public health emergencies suggested that "dual track of peace and war" approach in discipline construction of critical care is the best medical model. Following the concept of "combination of peace and war", strengthening the discipline construction of critical care department in municipal and district designated hospitals, allocating reasonable standard ICU, step-down ICU and combat readiness ICU, establishing rapid response team, and strengthening regular training and scientific management may be the key measures to deal with the epidemic.


Subject(s)
COVID-19 , Pandemics , Aged , Critical Care , Hospitals , Humans , Intensive Care Units , Pandemics/prevention & control
11.
Med Rev (Berl) ; 2(1): 3-22, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1879342

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused immense losses in human lives and the global economy and posed significant challenges for global public health. As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has evolved, thousands of single nucleotide variants (SNVs) have been identified across the viral genome. The roles of individual SNVs in the zoonotic origin, evolution, and transmission of SARS-CoV-2 have become the focus of many studies. This review summarizes recent comparative genomic analyses of SARS-CoV-2 and related coronaviruses (SC2r-CoVs) found in non-human animals, including delineation of SARS-CoV-2 lineages based on characteristic SNVs. We also discuss the current understanding of receptor-binding domain (RBD) evolution and characteristic mutations in variants of concern (VOCs) of SARS-CoV-2, as well as possible co-evolution between RBD and its receptor, angiotensin-converting enzyme 2 (ACE2). We propose that the interplay between SARS-CoV-2 and host RNA editing mechanisms might have partially resulted in the bias in nucleotide changes during SARS-CoV-2 evolution. Finally, we outline some current challenges, including difficulty in deciphering the complicated relationship between viral pathogenicity and infectivity of different variants, and monitoring transmission of SARS-CoV-2 between humans and animals as the pandemic progresses.

12.
Mol Biol Evol ; 39(3)2022 03 02.
Article in English | MEDLINE | ID: covidwho-1722547

ABSTRACT

In new epidemics after the host shift, the pathogens may experience accelerated evolution driven by novel selective pressures. When the accelerated evolution enters a positive feedback loop with the expanding epidemics, the pathogen's runaway evolution may be triggered. To test this possibility in coronavirus disease 2019 (COVID-19), we analyze the extensive databases and identify five major waves of strains, one replacing the previous one in 2020-2021. The mutations differ entirely between waves and the number of mutations continues to increase, from 3-4 to 21-31. The latest wave in the fall of 2021 is the Delta strain which accrues 31 new mutations to become highly prevalent. Interestingly, these new mutations in Delta strain emerge in multiple stages with each stage driven by 6-12 coding mutations that form a fitness group. In short, the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from the oldest to the youngest wave, and from the earlier to the later stages of the Delta wave, is a process of acceleration with more and more mutations. The global increase in the viral population size (M(t), at time t) and the mutation accumulation (R(t)) may have indeed triggered the runaway evolution in late 2020, leading to the highly evolved Alpha and then Delta strain. To suppress the pandemic, it is crucial to break the positive feedback loop between M(t) and R(t), neither of which has yet to be effectively dampened by late 2021. New waves after Delta, hence, should not be surprising.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Humans , Mutation , Pandemics , SARS-CoV-2/genetics
13.
Ann Neurol ; 91(4): 568-574, 2022 04.
Article in English | MEDLINE | ID: covidwho-1680263

ABSTRACT

Coronavirus disease 2019 (COVID-19) severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2 infection) can lead to intensive care unit (ICU) admission and critical illness myopathy (CIM). We examined 3 ICU patients with COVID-19 who required mechanical ventilation for pneumonia and developed CIM. Pathological examination of the skeletal muscle biopsies revealed myopathic changes consistent with CIM, variable inflammation with autophagic vacuoles, SARS-CoV immunostaining + fibers/granules, and electron microscopy findings of mitochondrial abnormalities and coronavirus-like particles. Although mitochondrial dysfunction with compromised energy production is a critical pathogenic mechanism of non-COVID-19-associated CIM, in our series of COVID-19-associated CIM, myopathic changes including prominent mitochondrial damage suggest a similar mechanism and association with direct SARS-CoV-2 muscle infection. ANN NEUROL 2022;91:568-574.


Subject(s)
COVID-19/complications , COVID-19/virology , Critical Illness , Muscular Diseases/etiology , Muscular Diseases/virology , SARS-CoV-2 , Adult , Aged , Autophagy , Fatal Outcome , Female , Humans , Inflammation/pathology , Intensive Care Units , Male , Middle Aged , Mitochondria/pathology , Muscle, Skeletal/pathology , Vacuoles/pathology
14.
Int J Environ Res Public Health ; 19(3)2022 01 27.
Article in English | MEDLINE | ID: covidwho-1674612

ABSTRACT

The Severe Acute Respiratory Syndrome-associated Coronavirus 2 (SARS-CoV-2) was an outbreak in December, 2019 and rapidly spread to the world. All variants of SARS-CoV-2, including the globally and currently dominant Delta variant (Delta-SARS-CoV-2), caused severe disease and mortality. Among all variants, Delta-SARS-CoV-2 had the highest transmissibility, growth rate, and secondary attack rate than other variants except for the new variant of Omicron that still exists with many unknown effects. In Taiwan, the pandemic Delta-SARS-CoV-2 began in Pingtung from 14 June 2021 and ceased at 11 July 2021. Seventeen patients were infected by Delta-SARS-CoV-2 and 1 person died during the Pingtung outbreak. The Public Health Bureau of Pingtung County Government stopped the Delta-SARS-CoV-2 outbreak within 1 month through measures such as epidemic investigation, rapid gene sequencing, rapidly expanding isolation, expanded screening of the Delta-SARS-CoV-2 antigen for people who lived in regional villages, and indirect intervention, including rapid vaccination, short lockdown period, and travel restrictions. Indirect environmental factors, such as low levels of air pollution, tropic weather in the summer season, and rural areas might have accelerated the ability to control the Delta-SARS-CoV-2 spread. This successful experience might be recommended as a successful formula for the unvaccinated or insufficiently vaccinated regions.


Subject(s)
COVID-19 , Communicable Disease Control , Disease Outbreaks , Humans , SARS-CoV-2 , Taiwan/epidemiology
15.
Zool Res ; 42(6): 834-844, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1515719

ABSTRACT

Understanding the zoonotic origin and evolution history of SARS-CoV-2 will provide critical insights for alerting and preventing future outbreaks. A significant gap remains for the possible role of pangolins as a reservoir of SARS-CoV-2 related coronaviruses (SC2r-CoVs). Here, we screened SC2r-CoVs in 172 samples from 163 pangolin individuals of four species, and detected positive signals in muscles of four Manis javanica and, for the first time, one M. pentadactyla. Phylogeographic analysis of pangolin mitochondrial DNA traced their origins from Southeast Asia. Using in-solution hybridization capture sequencing, we assembled a partial pangolin SC2r-CoV (pangolin-CoV) genome sequence of 22 895 bp (MP20) from the M. pentadactyla sample. Phylogenetic analyses revealed MP20 was very closely related to pangolin-CoVs that were identified in M. javanica seized by Guangxi Customs. A genetic contribution of bat coronavirus to pangolin-CoVs via recombination was indicated. Our analysis revealed that the genetic diversity of pangolin-CoVs is substantially higher than previously anticipated. Given the potential infectivity of pangolin-CoVs, the high genetic diversity of pangolin-CoVs alerts the ecological risk of zoonotic evolution and transmission of pathogenic SC2r-CoVs.


Subject(s)
COVID-19/veterinary , Evolution, Molecular , Pangolins/virology , SARS-CoV-2/genetics , Animals , Genome, Viral , Phylogeny , RNA, Viral/genetics
16.
China CDC Wkly ; 3(41): 869-877, 2021 Oct 08.
Article in English | MEDLINE | ID: covidwho-1498479

ABSTRACT

INTRODUCTION: Assessing the effects of non-pharmaceutical interventions (NPIs) and vaccines on controlling the coronavirus disease 2019 (COVID-19) is key for each government to optimize the anti-contagion policy according to their situation. METHODS: We proposed the Braking Force Model on Virus Transmission to evaluate the validity and efficiency of NPIs and vaccines. This model classified the NPIs and the administration of vaccines at different effectiveness levels and forecasted the duration required to control the pandemic, providing an indication of the future trends of the pandemic wave. RESULTS: This model was applied to study the effectiveness of the most commonly used NPIs according to the historic pandemic waves in different countries and regions. It was found that when facing an outbreak, only strict lockdown would give efficient control of the pandemic; the other NPIs were insufficient to promptly and effectively reduce virus transmission. Meanwhile, our results showed that NPIs would likely only slow down the pandemic's progression and maintain a low transmission level but fail to eradicate the disease. Only vaccination would likely have had a better chance of success in ending the pandemic. DISCUSSION: Based on the Braking Force Model, a pandemic control strategy framework has been devised for policymakers to determine the commencement and duration of appropriate interventions, with the aim of obtaining a balance between public health risk management and economic recovery.

18.
Nucleic Acids Res ; 50(D1): D888-D897, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1462429

ABSTRACT

The genomic variations of SARS-CoV-2 continue to emerge and spread worldwide. Some mutant strains show increased transmissibility and virulence, which may cause reduced protection provided by vaccines. Thus, it is necessary to continuously monitor and analyze the genomic variations of SARS-COV-2 genomes. We established an evaluation and prewarning system, SARS-CoV-2 variations evaluation and prewarning system (VarEPS), including known and virtual mutations of SARS-CoV-2 genomes to achieve rapid evaluation of the risks posed by mutant strains. From the perspective of genomics and structural biology, the database comprehensively analyzes the effects of known variations and virtual variations on physicochemical properties, translation efficiency, secondary structure, and binding capacity of ACE2 and neutralizing antibodies. An AI-based algorithm was used to verify the effectiveness of these genomics and structural biology characteristic quantities for risk prediction. This classifier could be further used to group viral strains by their transmissibility and affinity to neutralizing antibodies. This unique resource makes it possible to quickly evaluate the variation risks of key sites, and guide the research and development of vaccines and drugs. The database is freely accessible at www.nmdc.cn/ncovn.


Subject(s)
COVID-19/virology , Databases, Factual , Mutation , SARS-CoV-2/genetics , Algorithms , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/metabolism , Artificial Intelligence , DNA Primers , Genome, Viral , Humans
19.
Signal Transduct Target Ther ; 6(1): 342, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1415923

ABSTRACT

While some individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present mild-to-severe disease, many SARS-CoV-2-infected individuals are asymptomatic. We sought to identify the distinction of immune response between asymptomatic and moderate patients. We performed single-cell transcriptome and T-cell/B-cell receptor (TCR/BCR) sequencing in 37 longitudinal collected peripheral blood mononuclear cell samples from asymptomatic, moderate, and severe patients with healthy controls. Asymptomatic patients displayed increased CD56briCD16- natural killer (NK) cells and upregulation of interferon-gamma in effector CD4+ and CD8+ T cells and NK cells. They showed more robust TCR clonal expansion, especially in effector CD4+ T cells, but lack strong BCR clonal expansion compared to moderate patients. Moreover, asymptomatic patients have lower interferon-stimulated genes (ISGs) expression in general but large interpatient variability, whereas moderate patients showed various magnitude and temporal dynamics of the ISGs expression across multiple cell populations but lower than a patient with severe disease. Our data provide evidence of different immune signatures to SARS-CoV-2 in asymptomatic infections.


Subject(s)
COVID-19 , Carrier State/immunology , Lymphocytes/immunology , SARS-CoV-2/immunology , Single-Cell Analysis , Transcriptome/immunology , Adolescent , Adult , COVID-19/genetics , COVID-19/immunology , Female , Humans , Male , Middle Aged , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL