Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Journal of Shandong University ; 58(6):34-40, 2020.
Article in Chinese | GIM | ID: covidwho-1776989

ABSTRACT

Objective: To explore the epidemiological and clinical characteristics of children infected with SARS-CoV-2 in Shandong Province.

2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-321219

ABSTRACT

Background: Infection with SARS-CoV-2 has been associated with liver dysfunction, aggravation of liver burden, and liver injury. This study aimed to assess the effects of liver injuries on the clinical outcomes of patients with COVID-19. Methods: A total of 1,564 patients with severe or critical COVID-19 from Huoshenshan Hospital, Wuhan, were enrolled. Chronic liver disease (CLD) was confirmed by consensus diagnostic criteria. Laboratory test results were compared between different groups. scRNA-seq data and bulk gene expression profiles were used to identify cell types associated with liver injury. Results: A total of 10.98% of patients with severe or critical COVID-19 developed liver injury after admission that was associated with significantly higher rates of mortality (21.74%, p <0.001) and intensive care unit admission (26.71%, p <0.001). A pre-existing CLD was not associated with a higher risk. However, fatty liver disease and cirrhosis were associated with higher risks, supported by evidences from single cell and bulk transcriptome analysis that showed more TMPRSS2 + cells in these tissues. By generating a model, we were able to predict the risk and severity of liver injury during hospitalization. Conclusion: We demonstrate that liver injury occurring during therapy in patients with COVID-19 is significantly associated with the severity of disease and mortality, but the presence of CLD is not associated. We provide a risk-score model that can predict whether patients with COVID-19 will develop liver injury or proceed to higher risk stages during subsequent hospitalizations. These findings may prove beneficial for the clinical management of patients infected with SARS-CoV-2.

3.
Cytokine Growth Factor Rev ; 63: 34-43, 2022 02.
Article in English | MEDLINE | ID: covidwho-1620616

ABSTRACT

Recent studies have identified an association between perturbed type I interferon (IFN) responses and the severity of coronavirus disease 2019 (COVID-19). IFNα intervention may normalize the dysregulated innate immunity of COVID-19. However, details regarding its utilization and therapeutic evidence have yet to be systematically evaluated. The aim of this comprehensive review was to summarize the current utilization of IFNα for COVID-19 treatment and to explore the evidence on safety and efficacy. A comprehensive review of clinical studies in the literature prior to December 1st, 2021, was performed to identify the current utilization of IFNα, which included details on the route of administration, the number of patients who received the treatment, the severity at the initiation of treatment, age range, the time from the onset of symptoms to treatment, dose, frequency, and duration as well as safety and efficacy. Encouragingly, no evidence was found against the safety of IFNα treatment for COVID-19. Early intervention, either within five days from the onset of symptoms or at hospital admission, confers better clinical outcomes, whereas late intervention may result in prolonged hospitalization.


Subject(s)
COVID-19 , COVID-19/drug therapy , Humans , Interferon-alpha/therapeutic use , SARS-CoV-2 , Treatment Outcome
4.
5.
Open forum infectious diseases ; 8(Suppl 1):S89-S91, 2021.
Article in English | EuropePMC | ID: covidwho-1564230

ABSTRACT

Background SARS-CoV-2 variants of concern (VOC) have challenged real-time reverse transcriptase polymerase chain reaction (RT-PCR) methods for the diagnosis of COVID-19. Methods The CDC 2019-Novel Coronavirus real-time RT-PCR panel was modified to create a single-plex extraction-free proxy RT-PCR assay, VOCFast™. This assay uses the nucleocapsid N1 as well as novel primer/probe pairs to target VOC mutations in the Orf1a and spike (S) genes. For analytical validation of VOCFast, synthetic controls for the Wuhan, alpha/B.1.1.7, beta/B.1.351, and gamma/P.1 strains were tested at various concentrations. Clinical validation was performed using patient anterior nares swab and saliva specimens collected in the Denver, CO area between Nov 2020 and Feb 2021 or in March 2021. Orthogonal next-generation sequencing (NGS) was also performed. Results Similar N1 quantification cycle (Cq) values corresponding to viral load were observed for all strains, suggesting that VOC mutations do not affect performance of the N1 primer/probe. Orf1a-mut and S1-mut primer/probes generated a stable high Cq value for the Wuhan strain. Conversely, Orf1a-mut Cq values were inversely correlated with viral load for all VOC. The S1-mut Cq was inversely correlated with viral load of the alpha strain, but did not reliably amplify beta/gamma VOC. The limit of detection was 8 copies/uL. The first set of COVID-19 patient specimens revealed no amplification using Orf1a-mut whereas 53% of specimens collected in Mar 2021 demonstrated amplification by Orf-1a. Orthogonal testing by the SARS-CoV-2 NGS Assay and COVID-DX software demonstrated that 12/12 alpha strains, 2/2 beta/gamma strains, and 33/33 Wuhan strains were correctly identified by VOCFast. Detection of VOC in clinical specimens and validation by NGS Conclusion The combination of the N1, Orf1a-mut, and S1-mut primers/probes in VOCFast can distinguish the Wuhan, alpha, and beta/gamma strains and it consistent with NGS results. Testing of clinical samples revealed that VOC emerged in Denver, CO in March 2021. Future work to discriminate beta, gamma, and emerging VOC is ongoing. In summary, VOCFast is an extraction-free RT-PCR assay for nasal swab and saliva specimens that can identify VOC with a turnaround time suitable for clinical testing. Disclosures Brian L. Harry, MD PhD, Summit Biolabs Inc. (Grant/Research Support, Shareholder) Mara Couto-Rodriguez, MS, Biotia (Employee) Dorottya Nagy-Szakal, MD PhD, Biotia Inc (Employee, Shareholder) Niamh B. O’Hara, PhD, Biotia (Board Member, Employee, Shareholder) Shi-Long Lu, MD PhD, Summit Biolabs Inc. (Grant/Research Support, Shareholder)

6.
J Magn Reson Imaging ; 54(2): 421-428, 2021 08.
Article in English | MEDLINE | ID: covidwho-1085671

ABSTRACT

BACKGROUND: Myocardial injury has been found using magnetic resonance imaging in recovered coronavirus disease 2019 (COVID-19) patients unselected or with ongoing cardiac symptoms. PURPOSE: To evaluate for the presence of myocardial involvement in recovered COVID-19 patients without cardiovascular symptoms and abnormal serologic markers during hospitalization. STUDY TYPE: Prospective. POPULATION: Twenty-one recovered COVID-19 patients and 20 healthy controls (HC). FIELD STRENGTH/SEQUENCE: 3.0 T, cine, T2-weighted imaging, T1 mapping, and T2 mapping. ASSESSMENT: Cardiac ventricular function includes end-diastolic volume, end-systolic volume, stroke volume, cardiac output, left ventricle (LV) mass, and ejection fraction (EF) of LV and right ventricle (RV), and segmental myocardial T1 and T2 values were measured. STATISTICAL TESTS: Student's t-test, univariate general linear model test, and chi-square test were used for analyses between two groups. Ordinary one-way analyses of variance or Kruskal-Wallis H test were used for analyses between three groups, followed by post-hoc analyses. RESULTS: Fifteen (71.43%) COVID-19 patients had abnormal magnetic resonance findings, including raised myocardial native T1 (5, 23.81%) and T2 values (10, 47.62%), decreased LVEF (1, 4.76%), and RVEF (2, 9.52%). The segmental myocardial T2 value of COVID-19 patients (49.20 [46.1, 54.6] msec) was significantly higher than HC (48.3 [45.2, 51.7] msec) (P < 0.001), while the myocardial native T1 value showed no significant difference between COVID-19 patients and HC. The myocardial T2 value of serious COVID-19 patients (52.5 [48.1, 57.1] msec) was significantly higher than unserious COVID-19 patients (48.8 [45.9, 53.8] msec) and HC (48.3 [45.2, 51.7]) (P < 0.001). COVID-19 patients with abnormally elevated D-dimer, C-reactive protein, or lymphopenia showed higher myocardial T2 values than without (all P < 0.05). DATA CONCLUSION: Cardiac involvement was observed in recovered COVID-19 patients with no preexisting cardiovascular disease, no cardiovascular symptoms, and elevated serologic markers of myocardial injury during the whole course of COVID-19. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 5.


Subject(s)
COVID-19 , Heart , Humans , Magnetic Resonance Imaging, Cine , Myocardium , Predictive Value of Tests , Prospective Studies , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left
7.
Hepatol Int ; 15(1): 202-212, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1064606

ABSTRACT

BACKGROUND: Infection with SARS-CoV-2 has been associated with liver dysfunction, aggravation of liver burden, and liver injury. This study aimed to assess the effects of liver injuries on the clinical outcomes of patients with COVID-19. METHODS: A total of 1520 patients with severe or critical COVID-19 from Huoshenshan Hospital, Wuhan, were enrolled. Chronic liver disease (CLD) was confirmed by consensus diagnostic criteria. Laboratory test results were compared between different groups. scRNA-seq data and bulk gene expression profiles were used to identify cell types associated with liver injury. RESULTS: A total of 10.98% of patients with severe or critical COVID-19 developed liver injury after admission that was associated with significantly higher rates of mortality (21.74%, p < 0.001) and intensive care unit admission (26.71%, p < 0.001). Pre-existing CLDs were not associated with a higher risk. However, fatty liver disease and cirrhosis were associated with higher risks, supported by evidences from single cell and bulk transcriptome analysis that showed more TMPRSS2+ cells in these tissues. By generating a model, we were able to predict the risk and severity of liver injury during hospitalization. CONCLUSION: We demonstrate that liver injury occurring during therapy as well as pre-existing CLDs like fatty liver disease and cirrhosis in patients with COVID-19 is significantly associated with the severity of disease and mortality, but the presence of other CLD is not associated. We provide a risk-score model that can predict whether patients with COVID-19 will develop liver injury or proceed to higher-risk stages during subsequent hospitalizations.


Subject(s)
COVID-19/complications , COVID-19/therapy , Liver Diseases/diagnosis , Liver Diseases/virology , Adult , Aged , COVID-19/mortality , China , Critical Care , Extracorporeal Membrane Oxygenation , Female , Hospitalization , Humans , Liver Diseases/mortality , Male , Middle Aged , Oxygen Inhalation Therapy , Respiration, Artificial , Risk Factors , Severity of Illness Index , Survival Rate
8.
Biomed Res Int ; 2020: 7520746, 2020.
Article in English | MEDLINE | ID: covidwho-930414

ABSTRACT

The spread of pathogenic severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) poses a global health emergency. Based on the symptomatic treatment and supporting therapy, prevention of complications is the major treatment option. Therefore, it is necessary to illustrate the potential mechanisms for the pathogenesis of COVID-19. Angiotensin-converting enzyme 2 (ACE2), the major receptor of SARS-CoV-2, is one of the major members of the renin-angiotensin system (RAS). In this review, we aimed to summarize the crucial roles of ACE2 in the pathogenesis of COVID-19, followed by illustrating potential treatment options relating to ACE2 and the RAS.


Subject(s)
COVID-19/physiopathology , COVID-19/therapy , Renin-Angiotensin System/physiology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , COVID-19/metabolism , COVID-19/virology , Humans , Receptors, Virus/metabolism , Renin-Angiotensin System/drug effects , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL