Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2043779

ABSTRACT

The exact pathophysiology of severe COVID-19 is not entirely elucidated, but it has been established that hyperinflammatory responses and cytokine storms play important roles. The aim of this study was to examine CMV status, select chemokines, and complement components in COVID-19, and how concentrations of given molecules differ over time at both molecular and proteomic levels. A total of 210 COVID-19 patients (50 ICU and 160 non-ICU patients) and 80 healthy controls were enrolled in this study. Concentrations of select chemokines (CXCL8, CXCL10, CCL2, CCL3, CCR1) and complement factors (C2, C9, CFD, C4BPA, C5AR1, CR1) were examined at mRNA and protein levels with regard to a COVID-19 course (ICU vs. non-ICU group) and CMV status at different time intervals. We detected several significant differences in chemokines and complement profiles between ICU and non-ICU groups. Pro-inflammatory chemokines and the complement system appeared to greatly contribute to the pathogenesis and development of severe COVID-19. Higher concentrations of CXCL8 and CCL2 in the plasma, with reduced mRNA expression presumably through negative feedback mechanisms, as well as CMV-positive status, correlated with more severe courses of COVID-19. Therefore, CXCL8, CCL2, and CMV seropositivity should be considered as new prognostic factors for severe COVID-19 courses. However, more in-depth research is needed.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Chemokine CCL2/metabolism , Chemokines/metabolism , Cytomegalovirus Infections/complications , Humans , Prognosis , Proteomics , RNA, Messenger
2.
Biomed Pharmacother ; 153: 113396, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2003883

ABSTRACT

Recent studies have shown that methylation changes identified in blood cells of COVID-19 patients have a potential to be used as biomarkers of SARS-CoV-2 infection outcomes. However, different studies have reported different subsets of epigenetic lesions that stratify patients according to the severity of infection symptoms, and more importantly, the significance of those epigenetic changes in the pathology of the infection is still not clear. We used methylomics and transcriptomics data from the largest so far cohort of COVID-19 patients from four geographically distant populations, to identify casual interactions of blood cells' methylome in pathology of the COVID-19 disease. We identified a subset of methylation changes that is uniformly present in all COVID-19 patients regardless of symptoms. Those changes are not present in patients suffering from upper respiratory tract infections with symptoms similar to COVID-19. Most importantly, the identified epigenetic changes affect the expression of genes involved in interferon response pathways and the expression of those genes differs between patients admitted to intensive care units and only hospitalized. In conclusion, the DNA methylation changes involved in pathophysiology of SARS-CoV-2 infection, which are specific to COVID-19 patients, can not only be utilized as biomarkers in the disease management but also present a potential treatment target.


Subject(s)
COVID-19 , Biomarkers , COVID-19/genetics , COVID-19/immunology , Epigenesis, Genetic , Humans , Interferons/genetics , Interferons/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL